
Asymptotes

Consider the graph of the function $f(x) = \frac{2x^2}{4 - x^2}$ in Figure 1.32.

FIGURE 1.32 The graph of $f(x) = 2x^2/(4 - x^2)$ has two vertical asymptotes and one horizontal asymptote.

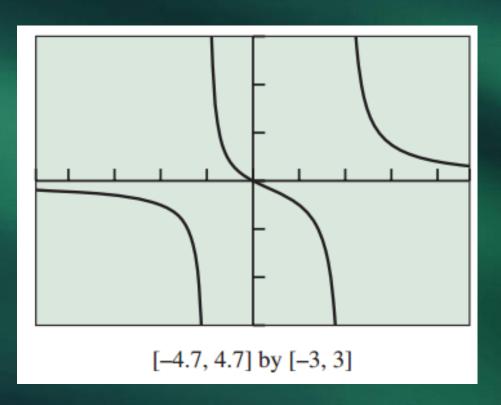
DEFINITION Horizontal and Vertical Asymptotes

The line y = b is a **horizontal asymptote** of the graph of a function y = f(x) if f(x) approaches a limit of b as x approaches $+\infty$ or $-\infty$.

In limit notation:

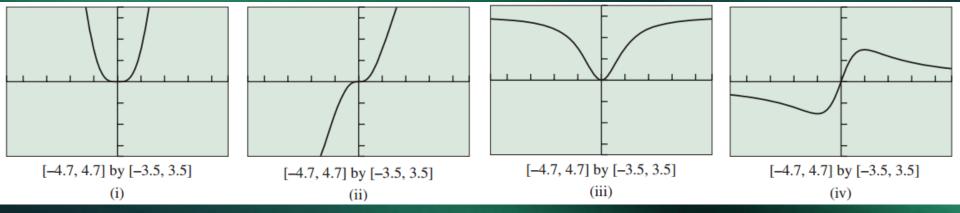
$$\lim_{x \to -\infty} f(x) = b \quad \text{or } \lim_{x \to +\infty} f(x) = b.$$

The line x = a is a **vertical asymptote** of the graph of a function y = f(x) if f(x) approaches a limit of $+\infty$ or $-\infty$ as x approaches a from either direction.


In limit notation:

$$\lim_{x \to a^{-}} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^{+}} f(x) = \pm \infty.$$

Identifying the Asymptotes of a Graph


Identify any horizontal or vertical asymptotes of the graph of

$$y = \frac{x}{x^2 - x - 2}.$$

Matching Functions Using End Behavior

(a)
$$y = \frac{3x}{x^2 + 1}$$
 (b) $y = \frac{3x^2}{x^2 + 1}$ (c) $y = \frac{3x^3}{x^2 + 1}$ (d) $y = \frac{3x^4}{x^2 + 1}$

