Assignment:

In Exercises 63–66, match the function with the corresponding graph by considering end behavior and asymptotes. All graphs are shown in the same viewing window.

63.
$$y = \frac{x+2}{2x+1}$$

64.
$$y = \frac{x^2 + 2}{2x + 1}$$

65.
$$y = \frac{x+2}{2x^2+1}$$
 66. $y = \frac{x^3+2}{2x^2+1}$

66.
$$y = \frac{x^3 + 2}{2x^2 + 1}$$

[-4.7, 4.7] by [-3.1, 3.1] (a)

[-4.7, 4.7] by [-3.1, 3.1] (b)

[-4.7, 4.7] by [-3.1, 3.1] (c)

[-4.7, 4.7] by [-3.1, 3.1] (d)

67. Can a graph cross its own asymptote? The Greek roots of the word "asymptote" mean "not meeting," since graphs tend to approach, but not meet, their asymptotes. Which of the following functions have graphs that *do* intersect their horizontal asymptotes?

(a)
$$f(x) = \frac{x}{x^2 - 1}$$

(c)
$$h(x) = \frac{x^2}{x^3 + 1}$$

(b)
$$g(x) = \frac{x}{x^2 + 1}$$

68. Can a graph have two horizontal asymptotes?

Although most graphs have at most one horizontal asymptote, it is possible for a graph to have more than one. Which of the following functions have graphs with more than one horizontal asymptote?

(a)
$$f(x) = \frac{|x^3 + 1|}{8 - x^3}$$

(c)
$$h(x) = \frac{x}{\sqrt{x^2 - 4}}$$

(b)
$$g(x) = \frac{|x-1|}{x^2-4}$$

69. Can a graph intersect its own vertical asymptote?

Graph the function
$$f(x) = \frac{x - |x|}{x^2} + 1$$
.

- (a) The graph of this function does not intersect its vertical asymptote. Explain why it does not.
- **(b)** Show how you can add a single point to the graph of f and get a graph that *does* intersect its vertical asymptote.
- (c) Is the graph in (b) the graph of a function?