Looking for Domains

(a) Nine of the functions have domain the set of all real numbers. Which three do not?

$$
f(x)=\frac{1}{x} \quad f(x)=\sqrt{x} \quad f(x)=\ln x
$$

(b) One of the functions has domain the set of all reals except 0 . Which function is it, and why isn't zero in its domain?

$$
f(x)=\frac{1}{x}
$$

(c) Which two functions have no negative numbers in their domains? Of these two, which one is defined at zero?

$$
f(x)=\sqrt{x} \quad f(x)=\ln x
$$

$$
f(x)=\sqrt{x}
$$

Looking for Continuity

Only two of twelve functions have points of discontinuity. Are these points in the domain of the function?

$$
\begin{array}{cc}
& f(x)=\operatorname{int}(x) \\
x & \text { or } \\
& f(x)=[x]
\end{array}
$$

NO!
YES!

Looking for Boundedness

Only three of the twelve basic functions are bounded (above and below). Which three?

$f(x)=\sin x$

$f(x)=\cos x$

$$
f(x)=\frac{1}{1+e^{-x}}
$$

Looking for Symmetry

Three of the twelve basic functions are even. Which are they?

$f(x)=x^{2}$

$f(x)=\cos x$

$f(x)=|x|$

Analyzing a Function Graphically

Graph the function $y=(x-2)^{2}$. Then answer the following questions:
(a) On what interval is the function increasing? On what interval is it decreasing?

decreasing ($-\infty, 2$]

increasing $[2, \infty)$

(b) Is the function odd, even, or neither?

neither

(c) Does the function have any extrema?
absolute minimum @ $(2,0)$
(d) How does the graph relate to the graph of the basic function $y=x^{2}$?

horizontal translation to the right 2

1. Two of the basic functions have vertical asymptotes at $x=0$. Which two?

$$
f(x)=\frac{1}{x} \quad f(x)=\ln x
$$

2. Form a new function by adding these functions together. Does the new function have a vertical asymptote at $x=0$? yes
3. Three of the basic functions have horizontal asymptotes at $y=0$. Which three? $\quad f(x)=\frac{1}{x} \quad f(x)=e^{x} \quad f(x)=\frac{1}{1+e^{-x}}$
4. Form a new function by adding these functions together. Does the new function have a horizontal asymptote at $y=0$? yes
5. Graph $f(x)=1 / x, g(x)=1 /\left(2 x^{2}-x\right)$, and $h(x)=f(x)+g(x)$. Does $h(x)$ have a vertical asymptote at $x=0$?
no, there is removable discontinuity @ $x=0$
