Looking for Domains

(a) Nine of the functions have domain the set of all real numbers. Which three do not?

$$f(x) = \frac{1}{x} \qquad f(x) = \sqrt{x} \qquad f(x) = \ln x$$

(b) One of the functions has domain the set of all reals except 0. Which function is it, and why isn't zero in its domain?

$$f(x) = \frac{1}{x}$$

(c) Which two functions have no negative numbers in their domains? Of these two, which one is defined at zero?

$$f(x) = \sqrt{x}$$
 $f(x) = \ln x$

$$f(x) = \sqrt{x}$$

Looking for Continuity

Only two of twelve functions have points of discontinuity. Are these points in the domain of the function?

$$f(x) = \frac{1}{x}$$

$$f(x) = int(x)$$
or
$$f(x) = [x]$$
NO!
YES!

Looking for Boundedness

Only three of the twelve basic functions are bounded (above and below). Which three?

 $f(x) = \sin x$ $f(x) = \cos x$ $f(x) = \frac{1}{1 + e^{-x}}$

Looking for Symmetry

Three of the twelve basic functions are even. Which are they?

Analyzing a Function Graphically

Graph the function $y = (x - 2)^2$. Then answer the following questions:

(a) On what interval is the function increasing? On what interval is it decreasing?

decreasing $(-\infty, 2]$

increasing $[2, \infty)$

(b) Is the function odd, even, or neither?

neither

(c) Does the function have any extrema?

absolute minimum @ (2, 0)

(d) How does the graph relate to the graph of the basic function $y = x^2$?

horizontal translation to the right 2

EXPLORATION 1 Looking for Asymptotes

- **1.** Two of the basic functions have vertical asymptotes at x = 0. Which two? $f(x) = \frac{1}{x}$ $f(x) = \ln x$
- **2.** Form a new function by adding these functions together. Does the new function have a vertical asymptote at x = 0? yes
- **3.** Three of the basic functions have horizontal asymptotes at y = 0. Which three? $f(x) = \frac{1}{x}$ $f(x) = e^x$ $f(x) = \frac{1}{1 + e^{-x}}$
- **4.** Form a new function by adding these functions together. Does the new function have a horizontal asymptote at y = 0? yes
- 5. Graph f(x) = 1/x, $g(x) = 1/(2x^2 x)$, and h(x) = f(x) + g(x). Does h(x) have a vertical asymptote at x = 0?

no, there is removable discontinuity @x = 0