Building Functions from Functions

DEFINITION Sum, Difference, Product, and Quotient of Functions

Let f and g be two functions with intersecting domains. Then for all values of x in the intersection, the algebraic combinations of f and g are defined by the following rules:

Sum:
$$(f+g)(x) = f(x) + g(x)$$

Difference:
$$(f-g)(x) = f(x) - g(x)$$

Product:
$$(fg)(x) = f(x)g(x)$$

Quotient:
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
, provided $g(x) \neq 0$

In each case, the domain of the new function consists of all numbers that belong to both the domain of f and the domain of g. As noted, the zeros of the denominator are excluded from the domain of the quotient.

Defining New Functions Algebraically

Let
$$f(x) = x^2$$
 and $g(x) = \sqrt{x+1}$.

Find formulas for the functions f + g, f - g, fg, f/g, and gg. Give the domain of each.

$$(f+g)(x) = f(x) + g(x) = x^2 + \sqrt{x+1}$$

$$(f-g)(x) = f(x) - g(x) = x^2 - \sqrt{x+1}$$

$$(fg)(x) = f(x)g(x) = x^2\sqrt{x+1}$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{x^2}{\sqrt{x+1}}$$

$$(gg)(x) = g(x)g(x) = (\sqrt{x+1})^2$$

Composition of Functions

DEFINITION Composition of Functions

Let f and g be two functions such that the domain of f intersects the range of g. The **composition** f of g, denoted $f \circ g$, is defined by the rule

$$(f \circ g)(x) = f(g(x)).$$

The domain of $f \circ g$ consists of all x-values in the domain of g that map to g(x)-values in the domain of f. (See Figure 1.55.)

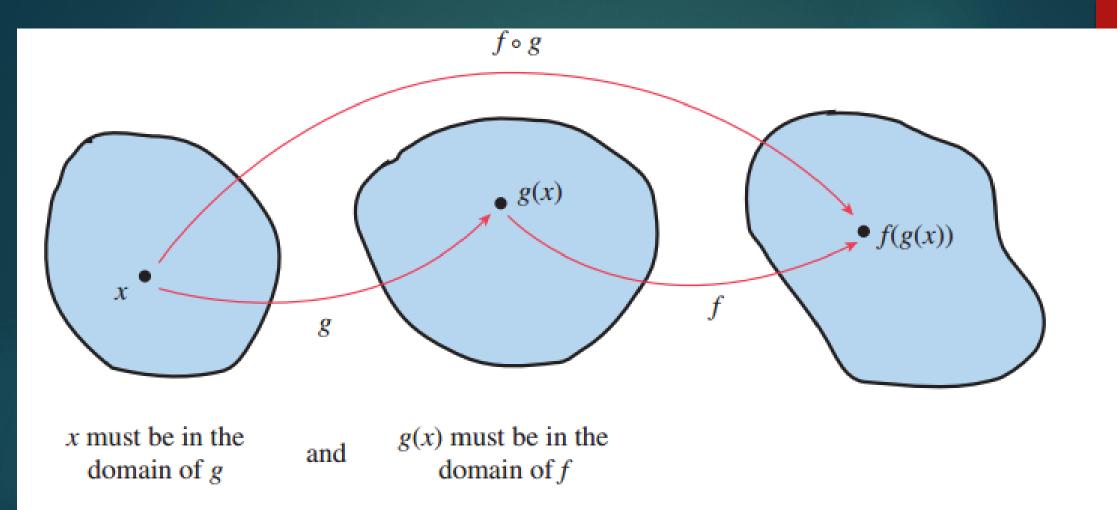


FIGURE 1.55 In the composition $f \circ g$, the function g is applied first and then f. This is the reverse of the order in which we read the symbols.

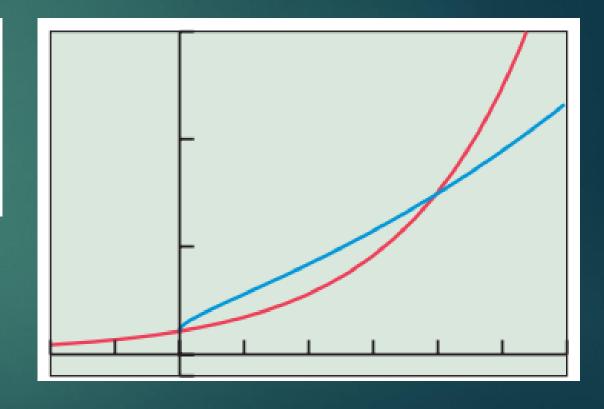
Composing Functions

Let $f(x) = e^x$ and $g(x) = \sqrt{x}$. Find $(f \circ g)(x)$ and $(g \circ f)(x)$ and verify numerically that the functions $f \circ g$ and $g \circ f$ are not the same.

SOLUTION

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = e^{\sqrt{x}}$$

$$(g \circ f)(x) = g(f(x)) = g(e^x) = \sqrt{e^x}$$

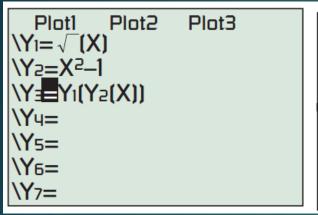


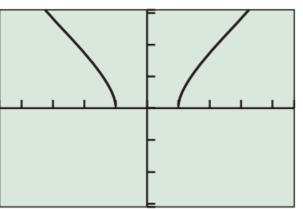
Finding the Domain of a Composition

Let $f(x) = x^2 - 1$ and let $g(x) = \sqrt{x}$. Find the domains of the composite functions

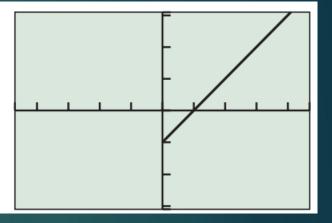
(a)
$$g \circ f$$

(b)
$$f \circ g$$





Plot1	Plot2	Plot3	
\Y1=√()			
	*		
\Y2=X ² -	.1		
	-		
\Y3 \Y 2(\	YILXJJ		
\Y4=			
\Y5=			
\Y ₆ =			
\V			
\1/=			



(a)
$$g \circ f$$

(b)
$$f \circ g$$

Decomposing Functions

For each function h, find functions f and g such that h(x) = f(g(x)).

(a)
$$h(x) = (x+1)^2 - 3(x+1) + 4$$

(b)
$$h(x) = \sqrt{x^3 + 1}$$