In Exercises 23–26, determine whether the function is one-to-one. If it is one-to-one, sketch the graph of the inverse.

23.

24.

25.

26.

In Exercises 27–32, confirm that f and g are inverses by showing that f(g(x)) = x and g(f(x)) = x.

27.
$$f(x) = 3x - 2$$
 and $g(x) = \frac{x+2}{3}$

29.
$$f(x) = x^3 + 1$$
 and $g(x) = \sqrt[3]{x - 1}$

31.
$$f(x) = \frac{x+1}{x}$$
 and $g(x) = \frac{1}{x-1}$

32.
$$f(x) = \frac{x+3}{x-2}$$
 and $g(x) = \frac{2x+3}{x-1}$

37. Which basic function can be defined parametrically as follows?

$$x = t^3$$
 and $y = \sqrt{t^6}$ for $-\infty < t < \infty$

38. Which basic function can be defined parametrically as follows?

$$x = 8t^3$$
 and $y = (2t)^3$ for $-\infty < t < \infty$

41. Multiple Choice Which ordered pair is in the *inverse* of the relation given by $x^2y + 5y = 9$?

(A) (2, 1) **(B)** (-2, 1) **(C)** (-1, 2) **(D)** (2, -1)

(E) (1, -2)

43. Multiple Choice Which function is the *inverse* of the function f(x) = 3x - 2?

(A)
$$g(x) = \frac{x}{3} + 2$$

(B)
$$g(x) = 2 - 3x$$

(C)
$$g(x) = \frac{x+2}{3}$$

(D)
$$g(x) = \frac{x-3}{2}$$

(E)
$$g(x) = \frac{x-2}{3}$$

44. Multiple Choice Which function is the *inverse* of the function

$$f(x) = x^3 + 1$$
?

(A)
$$g(x) = \sqrt[3]{x-1}$$

(B)
$$g(x) = \sqrt[3]{x} - 1$$

(C)
$$g(x) = x^3 - 1$$

(D)
$$g(x) = \sqrt[3]{x+1}$$

(E)
$$g(x) = 1 - x^3$$