In Exercises 5–8, complete the following. (a) Find the points determined by t = -3, -2, -1, 0, 1, 2, and 3. (b) Find a direct algebraic relationship between x and y and determine whether the parametric equations determine y as a function of x. (c) Graph the relationship in the xy-plane.

5.
$$x = 2t$$
 and $y = 3t - 1$

6.
$$x = t + 1$$
 and $y = t^2 - 2t$

7.
$$x = t^2$$
 and $y = t - 2$

8.
$$x = \sqrt{t}$$
 and $y = 2t - 5$

In Exercises 9–12, the graph of a relation is shown. (a) Is the relation a function? (b) Does the relation have an inverse that is a function?

In Exercises 13–22, find a formula for $f^{-1}(x)$. Give the domain of f^{-1} , including any restrictions "inherited" from f.

13.
$$f(x) = 3x - 6$$

15.
$$f(x) = \frac{2x-3}{x+1}$$

17.
$$f(x) = \sqrt{x-3}$$

19.
$$f(x) = x^3$$