Translations

Let c be a positive real number. Then the following transformations result in translations of the graph of y = f(x):

Horizontal Translations

$$y = f(x - c)$$

y = f(x - c) a translation to the right by c units

$$y = f(x+c)$$

y = f(x + c) a translation to the left by c units

Vertical Translations

$$y = f(x) + c$$

a translation up by c units

$$y = f(x) - c$$

a translation down by c units

Vertical Translations

Describe how the graph of y = |x| can be transformed to the graph of the given equation.

(a)
$$y = |x| - 4$$

(b)
$$y = |x + 2|$$

Finding Equations for Translations

Reflections Across Axes

Points (x, y) and (x, -y) are reflections of each other across the x-axis. Points (x, y) and (-x, y) are reflections of each other across the y-axis. (See Figure 1.75.) Two points (or graphs) that are symmetric with respect to a line are reflections of each other across that line.

Reflections

The following transformations result in reflections of the graph of y = f(x):

Across the x-axis

$$y = -f(x)$$

Across the y-axis

$$y = f(-x)$$

Finding Equations for Reflections

Find an equation for the reflection of $f(x) = \frac{5x - 9}{x^2 + 3}$ across each axis.

- Open up Desmos
- Login with your google
- Graph the 5 five functions one at a time, taking notice of the differences.
- Describe the changes that you see.....
- Save the file as "vertical stretch and shrink"

EXPLORATION 3 Introducing Stretches and Shrinks

Set your viewing window to [-4.7, 4.7] by [-1.1, 5.1] and your graphing mode to sequential as opposed to simultaneous.

1. Graph the functions

$$y_1 = \sqrt{4 - x^2}$$

$$y_2 = 1.5y_1(x) = 1.5\sqrt{4 - x^2}$$

$$y_3 = 2y_1(x) = 2\sqrt{4 - x^2}$$

$$y_4 = 0.5y_1(x) = 0.5\sqrt{4 - x^2}$$

$$y_5 = 0.25y_1(x) = 0.25\sqrt{4 - x^2}$$

on the same screen. What effect do the 1.5, 2, 0.5, and 0.25 seem to have?

- Open a new file
- Repeat the process with the next 5 five functions one at a time, taking notice of the differences.
- Describe the changes that you see in your notes....
- Save the file as "horizontal stretch and shrink"

2. Graph the functions

$$y_1 = \sqrt{4 - x^2}$$

$$y_2 = y_1(1.5x) = \sqrt{4 - (1.5x)^2}$$

$$y_3 = y_1(2x) = \sqrt{4 - (2x)^2}$$

$$y_4 = y_1(0.5x) = \sqrt{4 - (0.5x)^2}$$

$$y_5 = y_1(0.25x) = \sqrt{4 - (0.25x)^2}$$

on the same screen. What effect do the 1.5, 2, 0.5, and 0.25 seem to have?

Stretches and Shrinks

Let c be a positive real number. Then the following transformations result in stretches or shrinks of the graph of y = f(x):

Horizontal Stretches or Shrinks

$$y = f\left(\frac{x}{c}\right)$$
 {a stretch by a factor of c if $c > 1$ a shrink by a factor of c if $c < 1$

Vertical Stretches or Shrinks

$$y = c \cdot f(x)$$
 {a stretch by a factor of c if $c > 1$ a shrink by a factor of c if $c < 1$