Limits and Motion: The Area Problem

EXAMPLE 1 Computing Distance Traveled

An automobile travels at a constant rate of 48 miles per hour for 2 hours and 30 minutes.
How far does the automobile travel?

SOLUTION We apply the formula d = rt:
d = (48 mi/hr)(2.5 hr) = 120 miles.



Distance from a Changing Velocity

A Distance Question

Suppose a ball rolls down a ramp and its velocity is always 2t feet per second,
where 7 is the number of seconds after it started to roll. How far does the ball
travel during the first 3 seconds?

Velocity times /Af gives /\s. But instantaneous velocity occurs at an instant of time, so
At = 0. That means As = 0. So, at any given instant of time, the ball doesn’t move.
Since any time interval consists of instants of time, the ball never moves at all! (You
might well ask: Is this another trick question?)

As was the case with the Velocity Question in Section 10.1, this foolish-looking exam-
ple conceals a very subtle algebraic dilemma—and, far from being a trick question, it is
exactly the question that needed to be answered in order to compute the distance trav-
eled by an object whose velocity varies as a function of time. The scientists who were
working on the tangent line problem realized that the distance-traveled problem must be
related to it, but, surprisingly, their geometry led them in another direction. The distance
traveled problem led them not to tangent lines, but to areas.



Limits at Infinity

Before we see the connection to areas, let us revisit another limit concept that will make
instantaneous velocity easier to handle, just as in the last section. We will again be con-
tent with an informal definition.

DEFINITION (INFORMAL) Limit at Infinity

When we write “lim f(x) = L,” we mean that f(x) gets arbitrarily close to L as

N=200

x gets arbitrarily large.



EXPLORATION 1 An Infinite Limit
A gallon of water is divided equally and poured into teacups. Find the amount
in each teacup and the total amount in all the teacups if there are

1. 10 teacups

2. 100 teacups

3. 1 billion teacups
4

. an infinite number of teacups

The preceding Exploration probably went pretty smoothly until you came to the infinite
number of teacups. At that point you were probably pretty comfortable in saying what
the total amount would be, and probably a little uncomfortable in saying how much
would be in each teacup. (Theoretically it would be zero, which is just one reason why
the actual experiment cannot be performed.) In the language of limits, the total amount
of water in the infinite number of teacups would look like this:

1
lim(n : —) = lim— = 1 gallon
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while the total amount in each teacup would look like this:

1'11:*1‘1i = () gallons.
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The Connection to Areas

If we graph the constant velocity v = 48 in Example 1 as a function of time ¢, we
notice that the area of the shaded rectangle is the same as the distance traveled
(Figure 10.4). This is no mere coincidence, either, as the area of the rectangle and the
distance traveled over the time interval are both computed by multiplying the same
two quantities:

(48 mph)(2.5 hr) = 120 miles.

Velocity (mph)

48

> Time (hr)

2.5



Now suppose we graph a velocity function that varies continuously as a function of time
(Figure 10.5). Would the area of this irregularly-shaped region still give the total dis-
tance traveled over the time interval [a, b]?
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EXAMPLE 3 Approximating an Area with
Rectangles
Use the six rectangles in Figure 10.7 to approximate the area of the region below the

graph of f(x) = x? over the interval [0, 3].
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SOLUTION The base of each approximating rectangle is 1/2. The height is deter-
mined by the function value at the right-hand endpoint of each subinterval. The areas
of the six rectangles and the total area are computed in the table below:

Base of Height of Area of

Subinterval rectangle rectangle rectangle
0, 1/2] 1/2 f(172) = (1/2)*> = 1/4 (1/2)(1/4) = 0.125
[1/2, 1] 1/2 f(Hy=(1)y=1 (1/2)(1) = 0.500
1, 3/2] 1/2 f(3/2) = (3/2)*> = 9/4 (1/2)(9/4) = 1.125
3/2, 2] 1/2 f(2)=(2)? = (1/2)(4) = 2.000
2, 5/2] 1/2 f(5/2) = (5/2)* = 25/4 (1/2)(25/4) = 3.125
5/2, 3] 1/2 fB3)=03B)P=9 (1/2)(9) = 4.500

Total Area: 11.375
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Figure 10.7 shows that the right rectangular approximation method (RRAM) in Example 4
overestimates the true area. If we were to use the function values at the left-hand end-
points of the subintervals (LRAM), we would obtain a rectangular approximation
(6.875 square units) that underestimates the true area (Figure 10.8). The average of the
two approximations is 9.125 square units, which is actually a pretty good estimate of

the true area of 9 square units. If we were to repeat the process with 20 rectangles, the
average would be 9.01125.



The calculus step 1s to move from a finite number of rectangles (yielding an approxi-
mate area) to an infinite number of rectangles (yielding an exact area). This brings us to
the definite integral.

The Definite Integral

In general, begin with a continuous function y = f(x) over an interval [a, b]. Divide
[a, b] into n subintervals of length Ax = (b — a)/n. Choose any value x, in the first
subinterval, x, in the second, and so on. Compute f(x,), f(x,), f(x3), ..., f(x,), multi-
ply each value by Ax, and sum up the products. In sigma notation, the sum of the
products is

i fx;)Ax.

The [imit of this sum as n approaches infinity is the solution to the area problem, and
hence the solution to the problem of distance traveled. Indeed, it solves a variety of
other problems as well, as you will learn when you study calculus. The limit, if it exists,
is called a definite integral.



DEFINITION Definite Integral

n

Let f'be a function defined on [a, b] and let Z f(x;)Ax be defined as above. The

i=1

b
definite integral of f over [a, b], denoted J’ f(x) dx, is given by

| f@ax =lim " r@ax

provided the limit exists. If the limit exists, we say fis integrable on [a, b].



EXAMPLE 4 Computing an Integral
5

Find j 2x dx. y
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EXAMPLE 5 Computing an Integral

Suppose a ball rolls down a ramp so that its velocity after ¢ seconds is always 2t feet
per second. How far does it fall during the first 3 seconds?
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