Defining a Limit Informally

There is nothing difficult about the following limit statements:

$$\lim_{x \to 3} (2x - 1) = 5 \qquad \lim_{x \to \infty} (x^2 + 3) = \infty \qquad \lim_{n \to \infty} \frac{1}{n} = 0$$

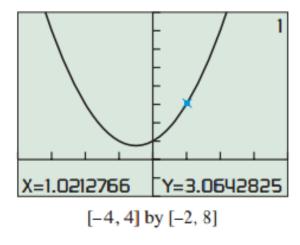
DEFINITION (INFORMAL) Limit at a

When we write " $\lim_{x\to a} f(x) = L$," we mean that f(x) gets arbitrarily close to L as x gets arbitrarily close (but not equal) to a.

EXAMPLE 1 Finding a Limit

Find
$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$$
.

Solve Graphically



Solve Numerically

X	Yı	
.997	2.991	
.998	2.994	
.999	2.997	
1	ERROR	
1.001	3.003	
1.002	3.006	
1.003	3.009	
Yı ■ (X³-		

(b)

Solve Algebraically

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{x - 1}$$

Properties of Limits

If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ both exist, then

1. Sum Rule
$$\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$

2. Difference Rule
$$\lim_{x \to c} (f(x) - g(x)) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$$

3. Product Rule
$$\lim_{x \to c} (f(x) \cdot g(x)) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$$

4. Constant Multiple
$$\lim_{x \to c} (k \cdot g(x)) = k \cdot \lim_{x \to c} g(x)$$
 Rule

5. Quotient Rule
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)},$$

provided
$$\lim_{x\to c} g(x) \neq 0$$

6. Power Rule
$$\lim_{x \to c} (f(x))^n = (\lim_{x \to c} f(x))^n \text{ for } n$$

7. Root Rule
$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)} \text{ for } n \ge 2$$
 a positive integer, provided $\sqrt[n]{\lim_{x \to c} f(x)}$ and $\lim \sqrt[n]{f(x)}$ are real numbers.

EXAMPLE 2 Using the Limit Properties

You will learn in Example 10 that $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Use this fact, along with the limit properties, to find the following limits:

(a)
$$\lim_{x \to 0} \frac{x + \sin x}{x}$$
 (

(a)
$$\lim_{x\to 0} \frac{x + \sin x}{x}$$
 (b) $\lim_{x\to 0} \frac{1 - \cos^2 x}{x^2}$ (c) $\lim_{x\to 0} \frac{\sqrt[3]{\sin x}}{\sqrt[3]{x}}$

(c)
$$\lim_{x \to 0} \frac{\sqrt[3]{\sin x}}{\sqrt[3]{x}}$$

Limits of Continuous Functions

Recall from Section 1.2 that a function is continuous at a if $\lim_{x\to a} f(x) = f(a)$. This means that the limit (at a) of a function can be found by "plugging in a" provided the function is continuous at a. (The condition of continuity is essential when employing this strategy. For example, plugging in 0 does not work on any of the limits in Example 2.)

EXAMPLE 3 Finding Limits by Substitution

Find the limits.

(a)
$$\lim_{x\to 0} \frac{e^x - \tan x}{\cos^2 x}$$

(b)
$$\lim_{n \to 16} \frac{\sqrt{n}}{\log_2 n}$$

One-sided and Two-sided Limits

We can see that the limit of the function in Figure 10.11 is 3 whether x approaches 1 from the left or right. Sometimes the values of a function f can approach different values as x approaches a number c from opposite sides. When this happens, the limit of f as x approaches c from the left is the **left-hand limit** of f at c and the limit of f as x approaches c from the right is the **right-hand limit** of f at c. Here is the notation we use:

left-hand: $\lim_{x\to c} f(x)$ The limit of f as x approaches c from the left.

right-hand: $\lim_{x \to c^+} f(x)$ The limit of f as x approaches c from the right.

EXAMPLE 4 Finding Left- and Right-Hand Limits

Find
$$\lim_{x \to 2^{-}} f(x)$$
 and $\lim_{x \to 2^{+}} f(x)$ where $f(x) = \begin{cases} -x^2 + 4x - 1 & \text{if } x \le 2 \\ 2x - 3 & \text{if } x > 2 \end{cases}$.

THEOREM One-sided and Two-sided Limits

A function f(x) has a limit as x approaches c if and only if the left-hand and right-hand limits at c exist and are equal. That is,

$$\lim_{x \to c} f(x) = L \iff \lim_{x \to c^{-}} f(x) = L \text{ and } \lim_{x \to c^{+}} f(x) = L.$$

EXAMPLE 5 Finding a Limit at a Point of Discontinuity

Let

$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & \text{if } x \neq 3\\ 2 & \text{if } x = 3. \end{cases}$$

Find $\lim_{x\to 3} f(x)$ and prove that f is discontinuous at x=3.

Limits Involving Infinity

DEFINITION Limits at Infinity

When we write " $\lim_{x\to\infty} f(x) = L$," we mean that f(x) gets arbitrarily close to L as x gets arbitrarily large. We say that f has a limit L as x approaches ∞ .

When we write " $\lim_{x \to -\infty} f(x) = L$," we mean that f(x) gets arbitrarily close to L as -x gets arbitrarily large. We say that f has a limit L as x approaches $-\infty$.

Notice that limits, whether at a or at infinity, are always finite real numbers; otherwise, the limits do not exist. For example, it is correct to write

$$\lim_{x\to 0} \frac{1}{x^2}$$
 does not exist,

since it approaches no real number L. In this case, however, it is also convenient to write

$$\lim_{x\to 0}\frac{1}{x^2}=\infty,$$

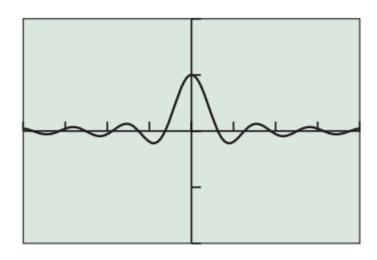
which gives us a little more information about *why* the limit fails to exist. (It increases without bound.) Similarly, it is convenient to write

$$\lim_{x\to 0^+} \ln x = -\infty,$$

since $\ln x$ decreases without bound as x approaches 0 from the right. In this context, the symbols " ∞ " and " $-\infty$ " are sometimes called **infinite limits**.

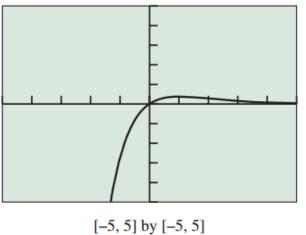
EXAMPLE 7 Investigating Limits as $x \rightarrow \pm \infty$

Let $f(x) = (\sin x)/x$. Find $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$.



EXAMPLE 8 Using Tables to Investigate Limits as $x \to \pm \infty$

Let
$$f(x) = xe^{-x}$$
. Find $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$.

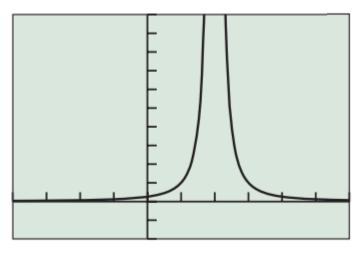


X	Yz	
0 10 20 30 40 50 60	0 4.5E-4 4.1E-8 3E-12 2E-16 1E-20 5E-25	
Y2 Xe^(-X)		

X	Yz		
0 -10 -20 -30 -40 -50 -60	0 -2.2E5 -9.7E9 -3E14 -9E18 -3E23 -7E27		
Y2 ■ Xe^(–X)			

EXAMPLE 9 Investigating Unbounded Limits

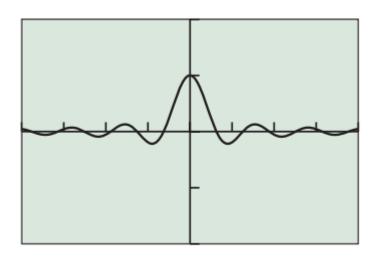
Find $\lim_{x\to 2} 1/(x-2)^2$.



[-4, 6] by [-2, 10]

EXAMPLE 10 Investigating a Limit at x = 0

Find $\lim_{x\to 0} (\sin x)/x$.



X	Y ₁	
03 02 01 0 .01 .02	.99985 .99998 .99998 ERROR .99998 .99993	
Yı≣ sin(X)/X		