## **EXAMPLE 4** Graphing Power Functions $f(x) = k \cdot x^a$

State the values of the constants k and a. Describe the portion of the curve that lies in Quadrant I or IV. Determine whether f is even, odd, or undefined for x < 0. Describe the rest of the curve if any. Graph the function to see whether it matches the description.

(a) 
$$f(x) = 2x^{-3}$$
 (b)

**(b)** 
$$f(x) = -0.4x^{1.5}$$
 **(c)**  $f(x) = -x^{0.4}$ 

## **EXAMPLE 6** Modeling Free-Fall Speed versus Distance

Use the data in Table 2.11 to obtain a power function model for speed p versus distance traveled d. Then use the model to predict the speed of the ball at impact given that impact occurs when  $d \approx 1.80$  m.



## Table 2.11 Rubber Ball Data from CBR™ Experiment

| Distance (m) | Speed (m/s) |  |
|--------------|-------------|--|
| 0.00000      | 0.00000     |  |
| 0.04298      | 0.82372     |  |
| 0.16119      | 1.71163     |  |
| 0.35148      | 2.45860     |  |
| 0.59394      | 3.05209     |  |
| 0.89187      | 3.74200     |  |
| 1.25557      | 4.49558     |  |

In Exercises 37–42, match the equation to one of the curves labeled in the figure.



**37.** 
$$f(x) = -\frac{2}{3}x^4$$

**39.** 
$$f(x) = 2x^{1/4}$$

**41.** 
$$f(x) = -2x^{-2}$$

**38.** 
$$f(x) = \frac{1}{2}x^{-5}$$

**40.** 
$$f(x) = -x^{5/3}$$

**42.** 
$$f(x) = 1.7x^{2/3}$$

In Exercises 43–48, state the values of the constants k and a for the function  $f(x) = k \cdot x^a$ . Describe the portion of the curve that lies in Quadrant I or IV. Determine whether f is even, odd, or undefined for x < 0. Describe the rest of the curve if any. Graph the function to see whether it matches the description.

**43.** 
$$f(x) = 3x^{1/4}$$

**45.** 
$$f(x) = -2x^{4/3}$$

**47.** 
$$f(x) = \frac{1}{2}x^{-3}$$

**44.** 
$$f(x) = -4x^{2/3}$$

**46.** 
$$f(x) = \frac{2}{5}x^{5/2}$$

**48.** 
$$f(x) = -x^{-4}$$

- **57. Light Intensity** Velma and Reggie gathered the data in Table 2.13 using a 100-watt light bulb and a Calculator-Based Laboratory<sup>TM</sup> (CBL<sup>TM</sup>) with a light-intensity probe.
  - (a) Draw a scatter plot of the data in Table 2.13
  - (b) Find the power regression model. Is the power close to the theoretical value of a = -2?
  - (c) Superimpose the regression curve on the scatter plot.
  - (d) Use the regression model to predict the light intensity at distances of 1.7m and 3.4 m.



## Table 2.13 Light Intensity Data for a 100-W Light Bulb

| Distance (m) | Intensity<br>(W/m <sup>2</sup> ) |
|--------------|----------------------------------|
| 1.0          | 7.95                             |
| 1.5          | 3.53                             |
| 2.0          | 2.01                             |
| 2.5          | 1.27                             |
| 3.0          | 0.90                             |