Long Division and the Division Algorithm

(Divisor)(Quotient) + Remainder = Dividend.

$$32 \times 112 + 3 = 3587$$

$$(3x + 2)(x^2 + x + 2) + 3 = 3x^3 + 5x^2 + 8x + 7.$$

Division Algorithm for Polynomials

Let f(x) and d(x) be polynomials with the degree of f greater than or equal to the degree of d, and $d(x) \neq 0$. Then there are unique polynomials q(x) and r(x), called the **quotient** and **remainder**, such that

$$f(x) = d(x) \cdot q(x) + r(x)$$

where either r(x) = 0 or the degree of r is less than the degree of d.

EXAMPLE 1 Using Polynomial Long Division

Use long division to find the quotient and remainder when $2x^4 - x^3 - 2$ is divided by $2x^2 + x + 1$. Write a summary statement in both polynomial and fraction form.

$$2x^2 + x + 1)2x^4 - x^3 + 0x^2 + 0x - 2$$

Remainder and Factor Theorems

THEOREM Remainder Theorem

If a polynomial f(x) is divided by x - k, then the remainder is r = f(k).

we evaluate the polynomial f(x) at x = k:

EXAMPLE 2 Using the Remainder Theorem

Find the remainder when $f(x) = 3x^2 + 7x - 20$ is divided by

(a)
$$x-2$$
 (b) $x+1$ (c) $x+4$.

THEOREM Factor Theorem

A polynomial function f(x) has a factor x - k if and only if f(k) = 0.

Applying the ideas of the Factor Theorem to Example 2, we can factor $f(x) = 3x^2 + 7x - 20$ by dividing it by the known factor x + 4.

$$3x - 5
x + 4)3x^{2} + 7x - 20
3x^{2} + 12x
-5x - 20
-5x - 20
0$$

So,
$$f(x) = 3x^2 + 7x - 20 = (x + 4)(3x - 5)$$
.

Fundamental Connections for Polynomial Functions

For a polynomial function f and a real number k, the following statements are equivalent:

- **1.** x = k is a solution (or root) of the equation f(x) = 0.
- **2.** k is a zero of the function f.
- **3.** k is an x-intercept of the graph of y = f(x).
- **4.** x k is a factor of f(x).

Synthetic Division

Long Division

$$\begin{array}{r}
2x^2 + 3x + 4 \\
x - 3)2x^3 - 3x^2 - 5x - 12 \\
\underline{2x^3 - 6x^2} \\
3x^2 - 5x - 12 \\
\underline{3x^2 - 9x} \\
4x - 12 \\
\underline{4x - 12} \\
0
\end{array}$$

EXAMPLE 3 Using Synthetic Division

Divide $2x^3 - 3x^2 - 5x - 12$ by x - 3 using synthetic division and write a summary statement in fraction form.

$$\frac{2x^3 - 3x^2 - 5x - 12}{x - 3} = 2x^2 + 3x + 4, x \neq 3.$$

Rational Zeros Theorem

Real zeros of polynomial functions are either **rational zeros**—zeros that are rational numbers—or **irrational zeros**—zeros that are irrational numbers. For example,

$$f(x) = 4x^2 - 9 = (2x + 3)(2x - 3)$$

has the rational zeros -3/2 and 3/2, and

$$f(x) = x^2 - 2 = (x + \sqrt{2})(x - \sqrt{2})$$

has the irrational zeros $-\sqrt{2}$ and $\sqrt{2}$.

THEOREM Rational Zeros Theorem

EXAMPLE 5 Finding the Rational Zeros

Find the rational zeros of $f(x) = 3x^3 + 4x^2 - 5x - 2$.

Potential Rational Zeros:

$$\frac{\text{Factors of } -2}{\text{Factors of 3}} : \frac{\pm 1, \pm 2}{\pm 1, \pm 3} : \pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}$$

