EXAMPLE 4 Finding the Rational Zeros

Find the rational zeros of $f(x) = x^3 - 3x^2 + 1$.

Upper and Lower Bounds

Upper and Lower Bound Tests for Real Zeros

Let f be a polynomial function of degree $n \ge 1$ with a positive leading coefficient. Suppose f(x) is divided by x - k using synthetic division.

- If $k \ge 0$ and every number in the last line is nonnegative (positive or zero), then k is an *upper bound* for the real zeros of f.
- If $k \le 0$ and the numbers in the last line are alternately nonnegative and non-positive, then k is a *lower bound* for the real zeros of f.

EXAMPLE 6 Establishing Bounds for Real Zeros

Prove that all of the real zeros of $f(x) = 2x^4 - 7x^3 - 8x^2 + 14x + 8$ must lie in the interval [-2, 5].

EXAMPLE 7 Finding the Real Zeros of a Polynomial Function

Find all of the real zeros of $f(x) = 2x^4 - 7x^3 - 8x^2 + 14x + 8$.

EXAMPLE 8 Finding the Real Zeros of a Polynomial Function

Prove that all of the real zeros of $f(x) = 10x^5 - 3x^2 + x - 6$ lie in the interval [0, 1], and find them.