Graphs of Rational Functions

Rational Functions

Rational functions are ratios (or quotients) of polynomial functions.

DEFINITION Rational Functions

Let f and g be polynomial functions with $g(x) \neq 0$. Then the function given by

$$r(x) = \frac{f(x)}{g(x)}$$

is a rational function.

EXAMPLE 1 Finding the Domain of a Rational Function

Find the domain of f and use limits to describe its behavior at value(s) of x not in its domain.

$$f(x) = \frac{1}{x - 2}$$

Χ	Y ₁	
2 1.99 1.98 1.97 1.96 1.95	ERROR -100 -50 -33.33 -25 -20	
1.94	-16.67	
Y₁ ≡ 1/(X–2)		

X	Yı
2 2.01 2.02 2.03 2.04 2.05 2.06	ERROR 100 50 33.333 25 20 16.667
Yı ■ 1/(X–2)	

$$\lim_{x\to 2^-} f(x) = -\infty \quad \text{and} \quad \lim_{x\to 2^+} f(x) = \infty.$$

$$\lim_{x \to 2^+} f(x) = \infty.$$

EXAMPLE 2 Transforming the Reciprocal Function

Describe how the graph of the given function can be obtained by transforming the graph of the reciprocal function f(x) = 1/x. Identify the horizontal and vertical asymptotes and use limits to describe the corresponding behavior. Sketch the graph of the function.

(a)
$$g(x) = \frac{2}{x+3}$$

$$2\left(\frac{1}{x+3}\right) = 2f(x+3)$$

(b)
$$h(x) = \frac{3x-7}{x-2}$$

$$\begin{array}{r}
3 \\
x-2)3x-7 \\
\underline{3x-6} \\
-1
\end{array}$$

$$3 - \frac{1}{x - 2} = -f(x - 2) + 3.$$

EXAMPLE 3 Finding Asymptotes

Find the horizontal and vertical asymptotes of $f(x) = (x^2 + 2)/(x^2 + 1)$. Use limits to describe the corresponding behavior of f.

$$1 + \frac{1}{x^2 + 1}$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 1,$$

Graph of a Rational Function

The graph of $y = f(x)/g(x) = (a_n x^n + \cdots)/(b_m x^m + \cdots)$ has the following characteristics:

1. End behavior asymptote:

If n < m, the end behavior asymptote is the horizontal asymptote y = 0.

If n = m, the end behavior asymptote is the horizontal asymptote $y = a_n/b_m$.

If n > m, the end behavior asymptote is the quotient polynomial function y = q(x), where f(x) = g(x)q(x) + r(x). There is no horizontal asymptote.

- 2. Vertical asymptotes: These occur at the zeros of the denominator, provided that the zeros are not also zeros of the numerator of equal or greater multiplicity.
- x-intercepts: These occur at the zeros of the numerator, which are not also zeros of the denominator.
- **4.** y-intercept: This is the value of f(0), if defined.

EXAMPLE 4 Graphing a Rational Function

Find the asymptotes and intercepts of the function $f(x) = x^3/(x^2 - 9)$ and graph the function.

$$f(x) = \frac{x^3}{x^2 - 9} = x + \frac{9x}{x^2 - 9}$$

If the end behavior asymptote of a rational function is a slant line, we call it a slant asymptote

EXAMPLE 5 Analyzing the Graph of a Rational Function

Find the intercepts, asymptotes, use limits to describe the behavior at the vertical asymptotes, and analyze and draw the graph of the rational function

$$\lim_{x \to -2^{-}} f(x) = -\infty$$
, $\lim_{x \to -2^{+}} f(x) = \infty$, $\lim_{x \to 3^{-}} f(x) = -\infty$, and $\lim_{x \to 3^{+}} f(x) = \infty$.

EXAMPLE 6 Analyzing the Graph of a Rational Function

Find the intercepts, analyze, and draw the graph of the rational function

$$f(x) = \frac{2x^2 - 2}{x^2 - 4}.$$

EXAMPLE 7 Finding an End-Behavior Asymptote

Find the end-behavior asymptote of

$$f(x) = \frac{x^3 - 3x^2 + 3x + 1}{x - 1}$$

