Solving Inequalities in One Variable

Polynomial Inequalities

A polynomial inequality takes the form f(x) > 0, $f(x) \ge 0$, f(x) < 0, $f(x) \le 0$ or $f(x) \ne 0$, where f(x) is a polynomial. There is a fundamental connection between inequalities and the positive or negative sign of the corresponding expression f(x):

- To solve f(x) > 0 is to find the values of x that make f(x) positive.
- To solve f(x) < 0 is to find the values of x that make f(x) negative.

EXAMPLE 1 Finding where a Polynomial is Zero, Positive, or Negative

Let $f(x) = (x + 3)(x^2 + 1)(x - 4)^2$. Determine the real number values of x that cause f(x) to be (a) zero, (b) positive, (c) negative.

This verbal reasoning process is aided by the following **sign chart**, which shows the x-axis as a number line with the real zeros displayed as the locations of potential sign change and the factors displayed with their sign value in the corresponding interval:

[-4, 6] by [-100, 200]

FIGURE 2.64 The graph of $f(x) = (x + 3)(x^2 + 1)(x - 4)^2$. (Example 1)

- The solution of $(x + 3)(x^2 + 1)(x 4)^2 > 0$ is $(-3, 4) \cup (4, \infty)$.
- The solution of $(x + 3)(x^2 + 1)(x 4)^2 \ge 0$ is $[-3, \infty)$.
- The solution of $(x + 3)(x^2 + 1)(x 4)^2 < 0$ is $(-\infty, -3)$.
- The solution of $(x + 3)(x^2 + 1)(x 4)^2 \le 0$ is $(-\infty, -3] \cup \{4\}$.

EXAMPLE 2 Solving a Polynomial Inequality Analytically

Solve $2x^3 - 7x^2 - 10x + 24 > 0$ analytically.

The Rational Zeros Theorem yields $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24, \pm \frac{1}{2}, \pm \frac{3}{2}$.

$$\begin{array}{c|ccccc}
4 & 2 & -7 & -10 & 24 \\
\hline
& 8 & 4 & -24 \\
\hline
& 2 & 1 & -6 & 0 \\
f(x) & = 2x^3 - 7x^2 - 10x + 24 \\
& = (x - 4)(2x^2 + x - 6) \\
& = (x - 4)(2x - 3)(x + 2)
\end{array}$$

Our analysis yields the following sign chart:

EXAMPLE 3 Solving a Polynomial Inequality Graphically

Solve $x^3 - 6x^2 \le 2 - 8x$ graphically.

First we rewrite the inequality as $x^3 - 6x^2 + 8x - 2 \le 0$.

EXAMPLE 4 Solving a Polynomial Inequality with Unusual Answers

- (a) The inequalities associated with the strictly positive polynomial function $f(x) = (x^2 + 7)(2x^2 + 1)$ have unusual solution sets. We use Figure 2.67a as a guide to solving the inequalities:
 - The solution of $(x^2 + 7)(2x^2 + 1) > 0$ is $(-\infty, \infty)$, all real numbers.
 - The solution of $(x^2 + 7)(2x^2 + 1) \ge 0$ is also $(-\infty, \infty)$.
 - The solution set of $(x^2 + 7)(2x^2 + 1) < 0$ is empty. We say an inequality of this sort has no solution.
 - The solution set of $(x^2 + 7)(2x^2 + 1) \le 0$ is also empty.

- **(b)** The inequalities associated with the nonnegative polynomial function $g(x) = (x^2 3x + 3)(2x + 5)^2$ also have unusual solution sets. We use Figure 2.67b as a guide to solving the inequalities:
 - The solution of $(x^2 3x + 3)(2x + 5)^2 > 0$ is $(-\infty, -5/2) \cup (-5/2, \infty)$, all real numbers except x = -5/2, the lone real zero of g.
 - The solution of $(x^2 3x + 3)(2x + 5)^2 \ge 0$ is $(-\infty, \infty)$, all real numbers.
 - The solution set of $(x^2 3x + 3)(2x + 5)^2 < 0$ is empty.
 - The solution of $(x^2 3x + 3)(2x + 5)^2 \le 0$ is the single number x = -5/2.

EXAMPLE 5 Creating a Sign Chart for a Rational Function

Let r(x) = (2x + 1)/((x + 3)(x - 1)). Determine the values of x that cause r(x) to be (a) zero, (b) undefined. Then make a sign chart to determine the values of x that cause r(x) to be (c) positive, (d) negative.

Analyzing the factors of the numerator and denominator yields:

- (a) The real zeros of r(x) are the real zeros of the numerator 2x + 1. So r(x) is zero if x = -1/2.
- **(b)** r(x) is undefined when the denominator (x + 3)(x 1) = 0. So r(x) is undefined if x = -3 or x = 1.
- (c) So r(x) is positive if -3 < x < -1/2 or x > 1, and the solution of (2x + 1)/((x + 3)(x 1)) > 0 is $(-3, -1/2) \cup (1, \infty)$.
- (d) Similarly, r(x) is negative if x < -3 or -1/2 < x < 1, and the solution of (2x + 1)/((x + 3)(x 1)) < 0 is $(-\infty, -3) \cup (-1/2, 1)$.