Exponential and Logistic Functions

Exponential Functions and Their Graphs

DEFINITION Exponential Functions

Let a and b be real number constants. An **exponential function** in x is a function that can be written in the form

$$f(x) = a \cdot b^x,$$

where a is nonzero, b is positive, and $b \neq 1$. The constant a is the *initial value* of f (the value at x = 0), and b is the **base**.

FIGURE 3.1 Sketch of $g(x) = 2^x$.

EXAMPLE 2

Computing Exponential Function Values for Rational Number Inputs

For
$$f(x) = 2^x$$
,

(a)
$$f(4) = 2^4$$

(b)
$$f(0) = 2^0 =$$

(c)
$$f(-3) = 2^{-3} =$$

(d)
$$f\left(\frac{1}{2}\right) = 2^{1/2} =$$

(e)
$$f\left(-\frac{3}{2}\right) = 2^{-3/2} =$$

Table 3.2 Values for Two Exponential Functions

X	g(x)	h(x)
-2	4/9	128 \×
-1	4/3	32
0	4	8 7
1	12 ×	2 ×
2	36	1/2 ×

Exponential Growth and Decay

For any exponential function $f(x) = a \cdot b^x$ and any real number x,

If a > 0 and b > 1, the function f is increasing and is an **exponential growth** function. The base b is its **growth factor**.

If a > 0 and b < 1, f is decreasing and is an **exponential decay function**. The base b is its **decay factor**.

EXAMPLE 4 Transforming Exponential Functions

Describe how to transform the graph of $f(x) = 2^x$ into the graph of the given function. Sketch the graphs by hand and support your answer with a grapher.

(a)
$$g(x) = 2^{x-1}$$

(b)
$$h(x) = 2^{-x}$$

(a)
$$g(x) = 2^{x-1}$$
 (b) $h(x) = 2^{-x}$ **(c)** $k(x) = 3 \cdot 2^x$

DEFINITION The Natural Base e

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$