In Exercises 11 and 12, determine a formula for the exponential function whose values are given in Table 3.6.

11. f(x)

12. g(x)

Table 3.6 Values for Two Exponential Functions

X	f(x)	g(x)
-2	6	108
-1	3	36
0	3/2	12
1	3/4	4
2	3/8	4/3

In Exercises 41-44, use a grapher to graph the function. Find the y-intercept and the horizontal asymptotes.

41.
$$f(x) = \frac{12}{1 + 2 \cdot 0.8^x}$$

42.
$$f(x) = \frac{18}{1 + 5 \cdot 0.2^x}$$

43.
$$f(x) = \frac{16}{1 + 3e^{-2x}}$$

44.
$$g(x) = \frac{9}{1 + 2e^{-x}}$$

- **51. Population Growth** Using the data in Table 3.7 and assuming the growth is exponential, when would the population of Austin surpass 800,000 persons?
- **52. Population Growth** Using the data in Table 3.7 and assuming the growth is exponential, when would the population of Columbus surpass 800,000 persons?
- **53. Population Growth** Using the data in Table 3.7 and assuming the growth is exponential, when would the populations of Austin and Columbus be equal?
- **54. Population Growth** Using the data in Table 3.7 and assuming the growth is exponential, which city—Austin or Columbus—would reach a population of 1 million first, and in what year?

Table 3.7 Populations of Two Major U.S. Cities

City	1990 Population	2000 Population
Austin, Texas	465,622	656,562
Columbus, Ohio	632,910	711,265

56. Population Growth Using 20th century U.S. census data, the population of New York state can be modeled by

$$P(t) = \frac{19.875}{1 + 57.993e^{-0.035005t}},$$

where *P* is the population in millions and *t* is the number of years since 1800. Based on this model,

- (a) What was the population of New York in 1850?
- **(b)** What will New York state's population be in 2010?
- **(c)** What is New York's *maximum sustainable population* (limit to growth)?

57. Bacteria Growth The number *B* of bacteria in a petri dish culture after *t* hours is given by

$$B = 100e^{0.693t}$$
.

- (a) What was the initial number of bacteria present?
- (b) How many bacteria are present after 6 hours?