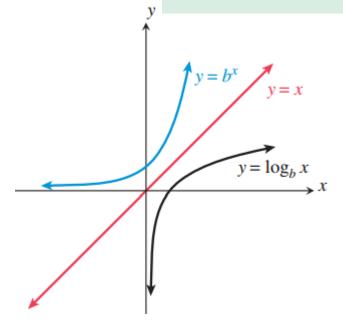
Logarithmic Functions and Their Graphs

Inverses of Exponential Functions

Changing Between Logarithmic and Exponential Form

If x > 0 and $0 < b \ne 1$, then

$$y = \log_b(x)$$
 if and only if $b^y = x$.



EXAMPLE 1 **Evaluating Logarithms**

(a)
$$\log_2 8 =$$

(b)
$$\log_3 \sqrt{3} =$$

(b)
$$\log_3 \sqrt{3} =$$
 (c) $\log_5 \frac{1}{25} =$

(d)
$$\log_4 1 =$$

(e)
$$\log_7 7 =$$

Basic Properties of Logarithms

For $0 < b \neq 1$, x > 0, and any real number y,

- $\log_b 1 = 0$ because $b^0 = 1$.
- $\log_b b = 1$ because $b^1 = b$.
- $\log_b b^y = y$ because $b^y = b^y$.
- $b^{\log_b x} = x$ because $\log_b x = \log_b x$.

EXAMPLE 2

Evaluating Logarithmic and Exponential Expressions

(a)
$$\log_2 8 =$$

(b)
$$\log_3 \sqrt{3} =$$

(c)
$$6^{\log_6 11} =$$

Common Logarithms—Base 10

Basic Properties of Common Logarithms

Let x and y be real numbers with x > 0.

- $\log 1 = 0$ because $10^0 = 1$.
- $\log 10 = 1$ because $10^1 = 10$.
- $\log 10^y = y$ because $10^y = 10^y$.
- $10^{\log x} = x$ because $\log x = \log x$.

EXAMPLE 3 **Evaluating Logarithmic and Exponential** Expressions—Base 10

(a)
$$\log 100 =$$

(b)
$$\log \sqrt[5]{10} =$$

(b)
$$\log \sqrt[5]{10} =$$
(c) $\log \frac{1}{1000} =$
(d) $10^{\log 6} =$

(d)
$$10^{\log 6} =$$

EXAMPLE 5 Solving Simple Logarithmic Equations

Solve each equation by changing it to exponential form.

(a)
$$\log x = 3$$

(b)
$$\log_2 x = 5$$

Basic Properties of Natural Logarithms

Let x and y be real numbers with x > 0.

- $\ln 1 = 0$ because $e^0 = 1$.
- $\ln e = 1$ because $e^1 = e$.
- $\ln e^y = y$ because $e^y = e^y$.
- $e^{\ln x} = x$ because $\ln x = \ln x$.

EXAMPLE 6 Evaluating Logarithmic and Exponential Expressions—Base *e*

- (a) $\ln \sqrt{e} =$
- **(b)** $\ln e^5 =$
- (c) $e^{\ln 4} =$