Go to Desmos, login with your google account and type in the following: (Add sliders and explore)

$$f(x) = a\sin(bx+c) + d$$

Save file as "sinusoid"

DEFINITION Sinusoid

A function is a sinusoid if it can be written in the form

$$f(x) = a \sin(bx + c) + d$$

where a, b, c, and d are constants and neither a nor b is 0.

DEFINITION Amplitude of a Sinusoid

The **amplitude** of the sinusoid $f(x) = a \sin(bx + c) + d \sin|a|$. Similarly, the amplitude of $f(x) = a \cos(bx + c) + d \sin|a|$.

Graphically, the amplitude is half the height of the wave.

EXAMPLE 1 Vertical Stretch or Shrink and Amplitude

Find the amplitude of each function and use the language of transformations to describe how the graphs are related.

(a)
$$y_1 = \cos x$$

(a)
$$y_1 = \cos x$$
 (b) $y_2 = \frac{1}{2}\cos x$ (c) $y_3 = -3\cos x$

(c)
$$y_3 = -3 \cos x$$

Period of a Sinusoid

The period of the sinusoid $f(x) = a \sin(bx + c) + d \sin 2\pi/|b|$. Similarly, the period of $f(x) = a \cos(bx + c) + d \sin 2\pi/|b|$.

Graphically, the period is the length of one full cycle of the wave.

EXAMPLE 2 Horizontal Stretch or Shrink and Period

Find the period of each function and use the language of transformations to describe how the graphs are related.

(a)
$$y_1 = \sin x$$
 (b) $y_2 = -2 \sin \left(\frac{x}{3}\right)$ (c) $y_3 = 3 \sin (-2x)$

FIGURE 4.40 Sinusoids (in this case, sine curves) of different amplitudes and

In some applications, the *frequency* of a sinusoid is an important consideration. The frequency is simply the reciprocal of the period.

Frequency of a Sinusoid

The **frequency** of the sinusoid $f(x) = a \sin(bx + c) + d \sin|b|/2\pi$. Similarly, the frequency of $f(x) = a \cos(bx + c) + d \sin|b|/2\pi$.

Graphically, the frequency is the number of complete cycles the wave completes in a unit interval.

EXAMPLE 3 Finding the Frequency of a Sinusoid

Find the frequency of the function $f(x) = 4 \sin(2x/3)$ and interpret its meaning graphically.

SOLUTION The frequency is $(2/3) \div 2\pi = 1/(3\pi)$. This is the reciprocal of the period, which is 3π . The graphical interpretation is that the graph completes 1 full cycle per interval of length 3π . (That, of course, is what having a period of 3π is all about.) The graph is shown in Figure 4.41.

Recall from Section 1.5 that the graph of y = f(x + c) is a translation of the graph of y = f(x) by c units to the left when c > 0. That is exactly what happens with sinusoids, but using terminology with its roots in electrical engineering, we say that the wave undergoes a **phase shift** of -c.

EXAMPLE 4 Getting one Sinusoid from Another by a Phase Shift

(a) Write the cosine function as a phase shift of the sine function.

EXAMPLE 5 Combining a Phase Shift with a Period Change

Construct a sinusoid with period $\pi/5$ and amplitude 6 that goes through (2, 0).

$$y = 6 \sin(10(x - 2)) = 6 \sin(10x - 20).$$

Graphs of Sinusoids

The graphs of $y = a \sin(b(x - h)) + k$ and $y = a \cos(b(x - h)) + k$ (where $a \ne 0$ and $b \ne 0$) have the following characteristics:

amplitude = |a|;

period =
$$\frac{2\pi}{|b|}$$
;
frequency = $\frac{|b|}{2\pi}$.

When compared to the graphs of $y = a \sin bx$ and $y = a \cos bx$, respectively, they also have the following characteristics:

a phase shift of *h*;

a vertical translation of k.

EXAMPLE 6 Constructing a Sinusoid by Transformations

Construct a sinusoid y = f(x) that rises from a minimum value of y = 5 at x = 0 to a maximum value of y = 25 at x = 32. (See Figure 4.42.)

