Go to Desmos, login with your google account and type in the following:
(Add sliders and explore)

$$
f(x)=a \sin (b x+c)+d
$$

Save file as "sinusoid"

DEFINITION Sinusoid

A function is a sinusoid if it can be written in the form

$$
f(x)=a \sin (b x+c)+d
$$

where a, b, c, and d are constants and neither a nor b is 0 .

DEFINITION Amplitude of a Sinusoid

The amplitude of the sinusoid $f(x)=a \sin (b x+c)+d$ is $|a|$. Similarly, the amplitude of $f(x)=a \cos (b x+c)+d$ is $|a|$.

Graphically, the amplitude is half the height of the wave.

EXAMPLE 1 Vertical Stretch or Shrink and Amplitude

Find the amplitude of each function and use the language of transformations to describe how the graphs are related.
(a) $y_{1}=\cos x$
(b) $y_{2}=\frac{1}{2} \cos x$
(c) $y_{3}=-3 \cos x$

$[-2 \pi, 2 \pi]$ by $[-4,4]$

The period of the sinusoid $f(x)=a \sin (b x+c)+d$ is $2 \pi /|b|$. Similarly, the period of $f(x)=a \cos (b x+c)+d$ is $2 \pi /|b|$.

Graphically, the period is the length of one full cycle of the wave.

EXAMPLE 2 Horizontal Stretch or Shrink and Period

Find the period of each function and use the language of transformations to describe how the graphs are related.
(a) $y_{1}=\sin x$
(b) $y_{2}=-2 \sin \left(\frac{x}{3}\right)$
(c) $y_{3}=3 \sin (-2 x)$

FIGURE 4.40 Sinusoids (in this case, sine curves) of different amplitudes and periods. (Example 2)

In some applications, the frequency of a sinusoid is an important consideration. The frequency is simply the reciprocal of the period.

Frequency of a Sinusoid

The frequency of the sinusoid $f(x)=a \sin (b x+c)+d$ is $|b| / 2 \pi$. Similarly, the frequency of $f(x)=a \cos (b x+c)+d$ is $|b| / 2 \pi$.

Graphically, the frequency is the number of complete cycles the wave completes in a unit interval.

EXAMPLE 3 Finding the Frequency of a Sinusoid

Find the frequency of the function $f(x)=4 \sin (2 x / 3)$ and interpret its meaning graphically.

$[-3 \pi, 3 \pi]$ by $[-4,4]$
SOLUTION The frequency is $(2 / 3) \div 2 \pi=1 /(3 \pi)$. This is the reciprocal of the period, which is 3π. The graphical interpretation is that the graph completes 1 full cycle per interval of length 3π. (That, of course, is what having a period of 3π is all about.) The graph is shown in Figure 4.41.

Recall from Section 1.5 that the graph of $y=f(x+c)$ is a translation of the graph of $y=f(x)$ by c units to the left when $c>0$. That is exactly what happens with sinusoids, but using terminology with its roots in electrical engineering, we say that the wave undergoes a phase shift of $-c$.

EXAMPLE 4 Getting one Sinusoid from Another by a Phase Shift

(a) Write the cosine function as a phase shift of the sine function.
(b) Write the sine function as a phase shift of the cosine function.

EXAMPLE 5 Combining a Phase Shift with

 a Period ChangeConstruct a sinusoid with period $\pi / 5$ and amplitude 6 that goes through $(2,0)$.

$$
y=6 \sin (10(x-2))=6 \sin (10 x-20) .
$$

Graphs of Sinusoids

The graphs of $y=a \sin (b(x-h))+k$ and $y=a \cos (b(x-h))+k($ where $a \neq 0$ and $b \neq 0$) have the following characteristics:

$$
\begin{aligned}
& \text { amplitude }=|a| ; \\
& \text { period }=\frac{2 \pi}{|b|} ; \\
& \text { frequency }=\frac{|b|}{2 \pi} .
\end{aligned}
$$

When compared to the graphs of $y=a \sin b x$ and $y=a \cos b x$, respectively, they also have the following characteristics:
a phase shift of h;
a vertical translation of k.

EXAMPLE 6 Constructing a Sinusoid by Transformations

Construct a sinusoid $y=f(x)$ that rises from a minimum value of $y=5$ at $x=0$ to a maximum value of $y=25$ at $x=32$. (See Figure 4.42.)

