EXAMPLE 1 Combining the Sine Function With x^2

Graph each of the following functions for $-2\pi \le x \le 2\pi$, adjusting the vertical window as needed. Which of the functions appear to be periodic?

(a)
$$y = \sin x + x^2$$

(b)
$$y = x^2 \sin x$$

(c)
$$y = (\sin x)^2$$

(d)
$$y = \sin(x^2)$$

 $[-2\pi, 2\pi]$ by [-10, 20]

 $[-2\pi, 2\pi]$ by [-1.5, 1.5]

EXAMPLE 2 Verifying Periodicity Algebraically

Verify algebraically that $f(x) = (\sin x)^2$ is periodic and determine its period graphically.

SOLUTION We use the fact that the period of the basic sine function is 2π , that is, $\sin(x + 2\pi) = \sin(x)$ for all x. It follows that

$$[-2\pi, 2\pi]$$
 by $[-1.5, 1.5]$

$$f(x + 2\pi) = (\sin(x + 2\pi))^{2}$$

$$= (\sin(x))^{2}$$
 By periodicity of sine
$$= f(x)$$

EXAMPLE 3 Composing $y = \sin x$ and $y = x^3$

Prove algebraically that $f(x) = \sin^3 x$ is periodic and find the period graphically. State the domain and range and sketch a graph showing two periods.

 $[-2\pi, 2\pi]$ by [-1.5, 1.5]

FIGURE 4.57 The graph of $f(x) = \sin^3 x$. (Example 3)

EXAMPLE 4 Analyzing Nonnegative Periodic Functions

Find the domain, range, and period of each of the following functions. Sketch a graph showing four periods.

(a)
$$f(x) = |\tan x|$$

(b)
$$g(x) = |\sin x|$$

 $[-2\pi, 2\pi]$ by [-1.5, 5]

FIGURE 4.59 $f(x) = |\tan x|$ has the same period as $y = \tan x$. (Example 4a)

 $[-2\pi, 2\pi]$ by [-1, 3]

FIGURE 4.60 $g(x) = |\sin x|$ has half the period of $y = \sin x$. (Example 4b)

EXAMPLE 5 Adding a Sinusoid to a Linear Function

The graph of $f(x) = 0.5x + \sin x$ oscillates between two parallel lines (Figure 4.61). What are the equations of the two lines?

 $[-2\pi, 2\pi]$ by [-4, 4]

FIGURE 4.61 The graph of $f(x) = 0.5x + \sin x$ oscillates between the lines y = 0.5x + 1 and y = 0.5x - 1. Although the wave repeats its shape, it is

not periodic. (Example 5)

EXAMPLE 6 Identifying a Sinusoid

Determine whether each of the following functions is or is not a sinusoid.

(a)
$$f(x) = 5 \cos x + 3 \sin x$$

(b)
$$f(x) = \cos 5x + \sin 3x$$

(c)
$$f(x) = 2 \cos 3x - 3 \cos 2x$$

(d)
$$f(x) = a \cos\left(\frac{3x}{7}\right) - b \cos\left(\frac{3x}{7}\right) + c \sin\left(\frac{3x}{7}\right)$$