4-7 Using Corresponding Parts of Congruent Triangles

- 1. Can you conclude that the triangles are congruent? Explain.
- **a.** $\triangle AZK$ and $\triangle DRS$
- **b.** $\triangle SDR$ and $\triangle JTN$
- **c.** $\triangle ZKA$ and $\triangle NJT$

Identifying Common Parts

Separate and redraw $\triangle DFG$ and $\triangle EHG$. Identify the common angle.

Given: $\angle ZXW \cong \angle YWX, \angle ZWX \cong \angle YXW$

Prove: $\overline{ZW} \cong \overline{YX}$

Proof:

Developing Proof Complete the flow proof.

Given: $\angle T \cong \angle R, \overline{PQ} \cong \overline{PV}$

Write a two-column proof.

c.

Given: $\overline{PS} \cong \overline{RS}$, $\angle PSQ \cong \angle RSQ$

Prove: $\triangle QPT \cong \triangle QRT$

Statements Reasons 1. 1. Given 2. $\overline{QS} \cong$ 2. Reflexive Property of Congruence 3. $\triangle PSQ \cong$ 3. SAS $4. \overline{PQ} \cong$ 4. CPCTC 5. $\angle PQT \cong$ 5. CPCTC 6. $\overline{QT} \simeq |$ 6. Reflexive Property of Congruence **7.** △*QPT*≃ 7. SAS

Name a pair of overlapping congruent triangles in each diagram. State whether the triangles are congruent by SSS, SAS, ASA, AAS, or HL.

Given:
$$\overline{ZW} \cong \overline{XY}$$
, $\angle YXW$ and $\angle ZWX$ are right $\angle s$

1.

2. Given:
$$\overline{LP} \cong \overline{LO}$$
, $\overline{PM} \cong \overline{ON}$

Separate and redraw the indicated triangles. Identify any common angles or sides.

4. $\triangle EFG$ and $\triangle HGF$

5. $\triangle JML$ and $\triangle NKL$

5. Write a two-column proof.

Given: $\overline{AX} \cong \overline{AY}$, $\overline{CX} \perp \overline{AB}$, $\overline{BY} \perp \overline{AC}$

Prove: $\triangle BYA \cong \triangle CXA$

Statements Reasons

6. Given: $\overline{FH} \cong \overline{GE}$, $\angle HFG \cong \angle EGF$

Prove: $\triangle GEH \cong \triangle FHE$

Statements

Reasons