Convert 114° to radians

Convert
$$\frac{7}{3}\pi$$
 radians to degrees

Evaluate each expression:

$$\cos\left(\frac{7}{3}\pi\right)$$

$$\sin\left(\frac{11}{6}\pi\right)$$

$$\tan\left(\frac{\pi}{2}\right)$$

$$\cot(120^\circ)$$

$$sec(315^\circ)$$

$$\csc(225^\circ)$$

Determine two angles that are conterminal (positive/negative) with each of the following:

$$-32^{\circ}$$

$$\frac{7}{8}\pi$$

Determine the amplitude and period of each:

$$f(x) = -4\sin(3x)$$

Directions: Identify the domain and range of each

$$f(x) = -4\sin(3x)$$

$$f(x) = -\tan\left(\frac{x}{2}\right)$$

Directions: Is the function a sinusoid?

$$f(x) = -4\sin(3x) + \cos(3x)$$

$$f(x) = 7\sin(2x) + 5\cos(3x)$$

Directions: solve the triangle

Directions: Evaluate

$$\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)$$

$$\tan^{-1}\left(-\sqrt{3}\right)$$

$$\tan\left[\cos^{-1}(0)\right]$$

Directions: Find the magnitude and direction of the vector

$$\langle -2, 12 \rangle$$

$$\overrightarrow{BA}$$

$$A(-3, -5) B(7, 9)$$

Directions: Put each vector in component form

Directions: Subtract the component form

$$\langle -2, 12 \rangle - \langle 7, 9 \rangle$$

Directions: Can you find the angle between two vectors

$$\langle -2, 12 \rangle \quad \langle 7, 9 \rangle$$

Directions: Determine whether the vectors are parallel, orthogonal or neither

$$\langle -2, 12 \rangle$$
 and $\langle 6, 1 \rangle$ $\langle -2, 12 \rangle$ and $\langle 6, -36 \rangle$

Directions: Simplify

$$\sin(\theta) \cdot \frac{1}{\csc(\theta)} \qquad \sin^2(\theta) + \cos^2(\theta)$$

Directions:

Directions: