Convert 114° to radians

Convert $\frac{7}{3} \pi$ radians to degrees

Evaluate each expression:

$$
\cos \left(\frac{7}{3} \pi\right)
$$

$$
\sin \left(\frac{11}{6} \pi\right)
$$

$$
\tan \left(\frac{\pi}{2}\right)
$$

$\cot \left(120^{\circ}\right)$

$$
\sec \left(315^{\circ}\right)
$$

$$
\csc \left(225^{\circ}\right)
$$

Determine two angles that are conterminal (positive/negative) with each of the following:

$$
\frac{7}{8} \pi
$$

Determine the amplitude and period of each:

$$
f(x)=-4 \sin (3 x)
$$

Directions: Identify the domain and range of each

$$
f(x)=-4 \sin (3 x)
$$

$$
f(x)=-\tan \left(\frac{x}{2}\right)
$$

Directions: Is the function a sinusoid?

$$
f(x)=-4 \sin (3 x)+\cos (3 x)
$$

$$
f(x)=7 \sin (2 x)+5 \cos (3 x)
$$

Directions: solve the triangle

Directions: Evaluate

$$
\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right)
$$

$$
\tan ^{-1}(-\sqrt{3})
$$

$$
\tan \left[\cos ^{-1}(0)\right]
$$

Directions: Find the magnitude and direction of the vector
$\langle-2,12\rangle$

$$
\begin{aligned}
& \overrightarrow{B A} \\
& A(-3,-5) B(7,9)
\end{aligned}
$$

Directions: Put each vector in component form

Directions: Subtract the component form

$$
\langle-2,12\rangle-\langle 7,9\rangle
$$

Directions: Can you find the angle between two vectors

$$
\langle-2,12\rangle \quad\langle 7,9\rangle
$$

Directions: Determine whether the vectors are parallel, orthogonal or neither

$\langle-2,12\rangle$ and $\langle 6,1\rangle \quad\langle-2,12\rangle$ and $\langle 6,-36\rangle$

Directions: Simplify

$$
\sin (\theta) \cdot \frac{1}{\csc (\theta)} \quad \sin ^{2}(\theta)+\cos ^{2}(\theta)
$$

Directions:

Directions:

