Dot Product of Vectors

DEFINITION Dot Product

The **dot product** or **inner product** of $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ is $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2$.

Properties of the Dot Product

Let **u**, **v**, and **w** be vectors and let c be a scalar.

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

2.
$$\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$$

3.
$$0 \cdot u = 0$$

4.
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$

5.
$$(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$$

EXAMPLE 1 Finding Dot Products

Find each dot product.

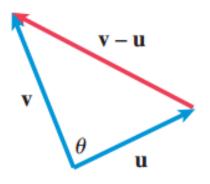
(a)
$$\langle 3, 4 \rangle \cdot \langle 5, 2 \rangle$$

(b)
$$\langle 1, -2 \rangle \cdot \langle -4, 3 \rangle$$

(c)
$$(2i - j) \cdot (3i - 5j)$$

EXAMPLE 2 Using Dot Product to Find Length

Use the dot product to find the length of the vector $\mathbf{u} = \langle 4, -3 \rangle$.



Angle Between Vectors

FIGURE 6.16 The angle θ between nonzero vectors **u** and **v**.

THEOREM Angle Between Two Vectors

If θ is the angle between the nonzero vectors **u** and **v**, then

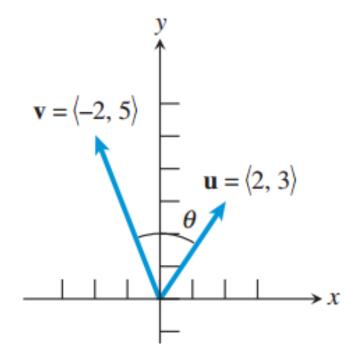
$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}$$

and
$$\theta = \cos^{-1} \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} \right)$$

EXAMPLE 3 Finding the Angle Between Vectors

Find the angle between the vectors \mathbf{u} and \mathbf{v} .

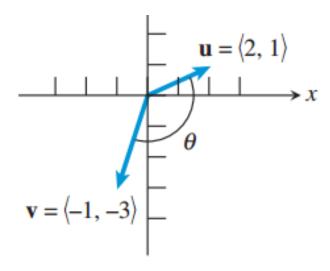
(a)
$$\mathbf{u} = \langle 2, 3 \rangle, \mathbf{v} = \langle -2, 5 \rangle$$



EXAMPLE 3 Finding the Angle Between Vectors

Find the angle between the vectors \mathbf{u} and \mathbf{v} .

(b)
$$\mathbf{u} = \langle 2, 1 \rangle, \, \mathbf{v} = \langle -1, -3 \rangle$$



DEFINITION Orthogonal Vectors

The vectors \mathbf{u} and \mathbf{v} are **orthogonal** if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

EXAMPLE 4 Proving Vectors are Orthogonal

Prove that the vectors $\mathbf{u} = \langle 2, 3 \rangle$ and $\mathbf{v} = \langle -6, 4 \rangle$ are orthogonal.