Polar Coordinates

Polar Coordinate System

A **polar coordinate system** is a plane with a point O, the **pole**, and a ray from O, the **polar axis**, as shown in Figure 6.35. Each point P in the plane is assigned as **polar coordinates** follows: r is the **directed distance** from O to P, and θ is the **directed angle** whose initial side is on the polar axis and whose terminal side is on the line OP.

As in trigonometry, we measure θ as positive when moving counterclockwise and negative when moving clockwise. If r > 0, then P is on the terminal side of θ . If r < 0, then P is on the terminal side of $\theta + \pi$. We can use radian or degree measure for the angle θ as illustrated in Example 1.

EXAMPLE 1 Plotting Points in the Polar Coordinate System

Plot the points with the given polar coordinates.

(a)
$$P(2, \pi/3)$$

(b)
$$Q(-1, 3\pi/4)$$

(c)
$$R(3, -45^{\circ})$$

EXAMPLE 2 Finding all Polar Coordinates for a Point

If the point P has polar coordinates $(3, \pi/3)$, find all polar coordinates for P.

Coordinate Conversion

Let the point P have polar coordinates (r, θ) and rectangular coordinates (x, y). Then

$$x = r \cos \theta,$$
 $r^2 = x^2 + y^2,$
 $y = r \sin \theta,$ $\tan \theta = \frac{y}{x}.$

EXAMPLE 3 Converting from Polar to Rectangular Coordinates

Find the rectangular coordinates of the points with the given polar coordinates.

(a)
$$P(3, 5\pi/6)$$

(b)
$$Q(2, -200^{\circ})$$

EXAMPLE 4 Converting from Rectangular to Polar Coordinates

Find two polar coordinate pairs for the points with given rectangular coordinates.

 $r^2 = x^2 + y^2$

(a)
$$P(-1, 1)$$

(b)
$$Q(-3,0)$$

$$P(-1, 1)$$

$$\pi + \tan^{-1}(-1) = \frac{3\pi}{4}$$

$$\tan^{-1}(-1) = -\frac{\pi}{4}$$

$$\tan \theta = \frac{y}{x}$$

Equation Conversion

We can use the Coordinate Conversion Equations to convert polar form to rectangular form and vice versa. For example, the polar equation $r = 4 \cos \theta$ can be converted to rectangular form as follows:

