Convert -212° to radians

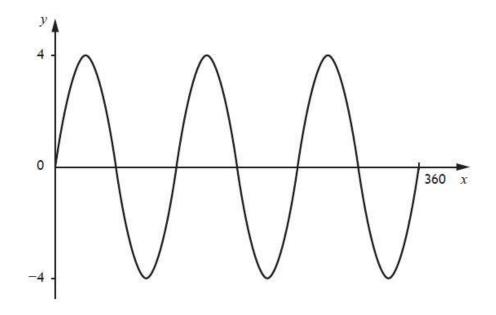
Convert
$$\frac{7\pi}{11}$$
 radians to degrees

Evaluate each expression:

$$\sin(90^\circ)$$

$$\tan(225^\circ)$$

$$\cos\left(\frac{5}{6}\pi\right)$$


$$\cot\left(\frac{11}{6}\pi\right)$$

$$\csc\left(\frac{4}{3}\pi\right)$$

Determine two angles that are coterminal (positive/negative) with each of the following:

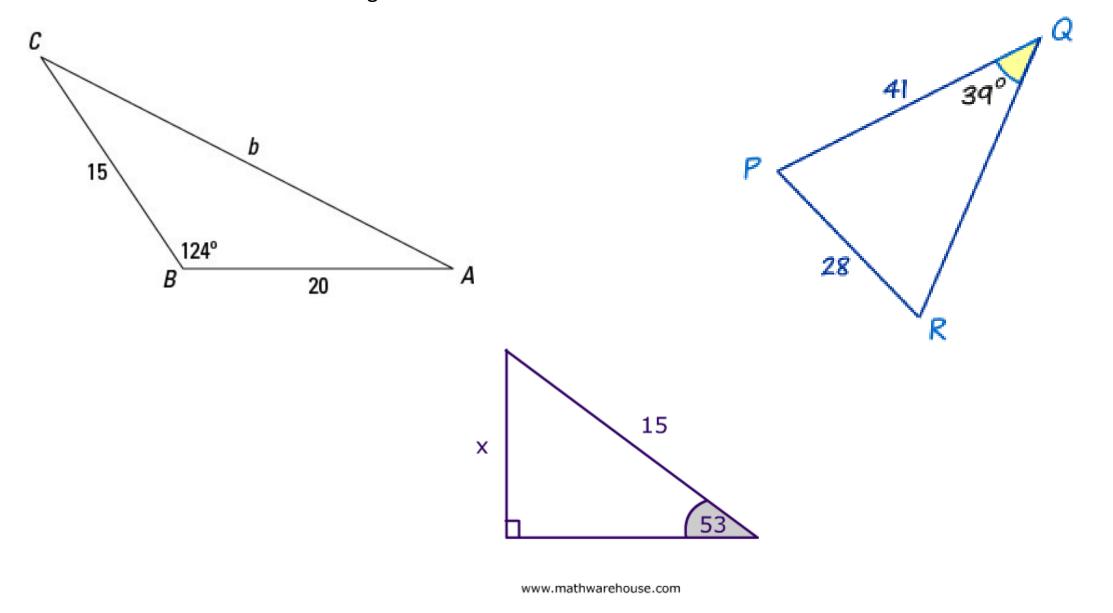
$$-\frac{\pi}{8}$$

Determine the amplitude and period of each:

$$f(x) = -3\cos(60x)$$

Directions: Identify the domain and range of each

$$f(x) = -5\cos(6x)$$


$$f(x) = \frac{1}{3}\tan(\frac{x}{2})$$

Directions: Is the function a sinusoid?

$$f(x) = -5\cos(6x) + 3\sin(6x)$$

$$f(x) = 4\cos(2x) - 3\sin(3x)$$

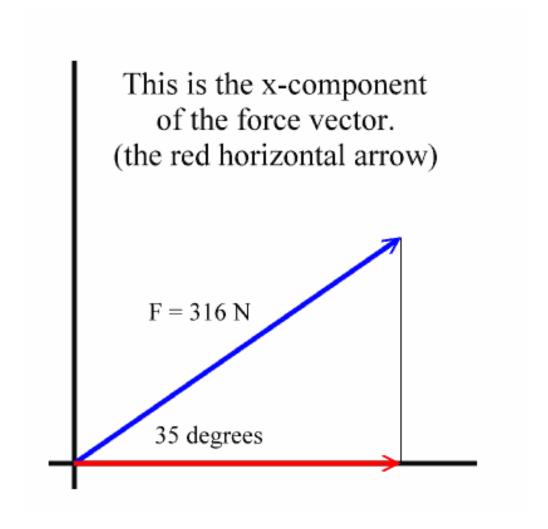
Directions: solve the triangle

Directions: Evaluate

$$\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$$

$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

$$\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$$


$$\tan\left[\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right]$$

Directions: Find the magnitude and direction of the vector

$$\langle -3, 4 \rangle$$
 BA

$$A(2, -5) \text{ and } B(3, 7)$$

Directions: Put each vector in component form

Directions: Subtract the component form

$$\overrightarrow{BA} - 2\overrightarrow{CD}$$

$$A(2, -5) \text{ and } B(3, 7)$$

$$C(2, -5) \text{ and } D(3, 7)$$

Directions: Can you find the angle between two vectors

$$\langle -3, 4 \rangle$$
 and $\langle 5, -11 \rangle$

Directions: Determine whether the vectors are parallel, orthogonal or neither

$$\langle -3, 4 \rangle$$
 and $\langle 5, -11 \rangle$

$$\langle -3, 4 \rangle$$
 and $\langle 4, 3 \rangle$

$$\langle -3, 4 \rangle$$
 and $\langle -6, 8 \rangle$

Directions: Simplify

$$\sin^2 x + \cos^2 x$$

$$\cot x \cdot \tan x$$

$$\sec x \cdot \cos x$$

Directions:

Directions: