The inverse of function f is denoted by f^{-1} . Read f^{-1} as "the inverse of f" or as "f inverse." The notation f(x) is used for functions, but the relation f^{-1} may not even be a function.

The range of the relation is the domain of the inverse, and the domain of the relation is the range of the inverse.

Consider the function $f(x) = \sqrt{x+1}$.

a. Find the domain and range of f.

b. Find f^{-1} .

c. Find the domain and range of f^{-1} .

d. Is f^{-1} a function? Explain.

Let f(x) = 10 - 3x. Find each of the following.

- **a.** the domain and range of f
- **c.** the domain and range of f^{-1}
- **e.** $f(f^{-1}(2))$

b.
$$f^{-1}$$

d.
$$f^{-1}(f(3))$$

For each function f, find f^{-1} and the domain and range of f and f^{-1} . Determine whether f^{-1} is a function.

23.
$$f(x) = 3x + 4$$

25.
$$f(x) = \sqrt{x+7}$$

27.
$$f(x) = 2x^2 + 2$$

24.
$$f(x) = \sqrt{x-5}$$

26.
$$f(x) = \sqrt{-2x + 3}$$

28.
$$f(x) = -x^2 + 1$$

Graph the function, it's inverse and y=x in Desmos for problems 23-28