\qquad Class \qquad
\qquad

9-1 • Guided Problem Solving

GPS Student Page 475, Exercise 26

Coordinate Geometry Parallelogram $A B C D$ has vertices $A(3,6)$,
$B(5,5), C(4,2)$, and $D(2,3)$. The figure is translated so that the image of point C is at the origin.
a. Find the rule that describes the translation.
b. Graph parallelogram $A B C D$ and its image.

Read and Understand

1. What information is given? \qquad
2. What are you asked to do? \qquad

Plan and Solve

3. What two points are the key to finding the translation rule? Give the coordinates for each.
4. The general form of a translation rule is $(x, y) \rightarrow(x+a, y+b)$. For the two points in Step 3, what is x ? What is y ? What are $x+a$ and $y+b$?
5. Find a and b, and write the translation rule. \qquad

Look Back and Check

8. Since translation does not alter the size or shape of a figure, $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ should be congruent. Are they? \qquad

Solve Another Problem

9. Suppose that instead of being translated to the origin, point C had been translated to point $(5,-1)$. What would the translation rule have been? What would the coordinates of points A^{\prime}, B^{\prime}, and D^{\prime} have been?
