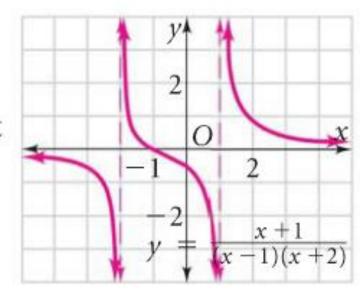
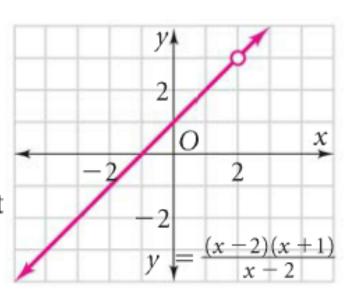
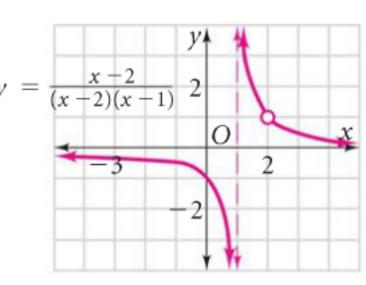
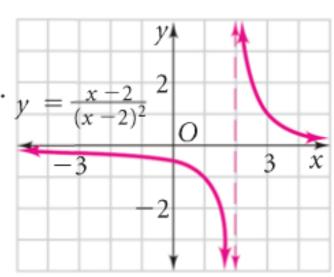

Compare the functions, denominators, asymptotes, and graphs below


The graphs of the rational functions $y = \frac{-2x}{x^2 + 1}$, $y = \frac{1}{x^2 - 4}$, and $y = \frac{(x + 2)(x - 1)}{x + 1}$ are shown below.




The graph of $y = \frac{x+1}{(x-1)(x+2)}$ is shown at the right. The zeros of the denominator are 1 and -2. The graph has vertical asymptotes at those points.

2 is a zero of both the numerator and the denominator of the rational function $y = \frac{(x-2)(x+1)}{x-2}$. The graph of this function is the same as the graph of y = x + 1, except it has a hole at x = 2.



2 is a zero of both the numerator and the denominator of the rational function $y = \frac{x-2}{(x-2)(x-1)}$. The graph of this function is the same as the graph of $y = \frac{1}{x-1}$, except it has a hole at x = 2.

2 is a zero of both the numerator and the denominator of the rational function $y = \frac{x-2}{(x-2)^2}$.

The graph of this function is exactly the same as the graph of $y = \frac{1}{x - 2}$. The vertical asymptote is x = 2 and there is no hole.

Properties

Vertical Asymptotes

The rational function $f(x) = \frac{P(x)}{Q(x)}$ has a point of discontinuity for each real zero of Q(x).

If P(x) and Q(x) have no common real zeros, then the graph of f(x) has a vertical asymptote at each real zero of Q(x).

If P(x) and Q(x) have a common real zero a, then there is a hole in the graph or a vertical asymptote at x = a.

EXAMPLE

Finding Points of Discontinuity

For each rational function, find any points of discontinuity.

$$\mathbf{a.}\ y = \frac{1}{x^2 + 2x + 1}$$

b.
$$y = \frac{-x+1}{x^2+1}$$

For each rational function, find any points of discontinuity.

a.
$$y = \frac{1}{x^2 - 16}$$

b.
$$y = \frac{x^2 - 1}{x^2 + 3}$$

c.
$$y = \frac{x+1}{x^2+2x-8}$$

Finding Vertical Asymptotes

Describe the vertical asymptotes and holes for the graph of each rational function.

a.
$$y = \frac{x+1}{(x-2)(x-3)}$$

b.
$$y = \frac{(x-2)(x-1)}{x-2}$$

c.
$$y = \frac{(x-3)(x+4)}{(x-3)(x-3)(x+4)}$$

Describe the vertical asymptotes and holes for the graph of each rational function.

a.
$$y = \frac{x-2}{(x-1)(x+3)}$$

a.
$$y = \frac{x-2}{(x-1)(x+3)}$$
 b. $y = \frac{x-2}{(x-2)(x+3)}$ **c.** $y = \frac{x^2-1}{x+1}$

c.
$$y = \frac{x^2 - 1}{x + 1}$$

Assignment:

Find any points of discontinuity for each rational function.

1.
$$y = \frac{x+3}{(x-4)(x+3)}$$

2.
$$y = \frac{x-2}{x^2-4}$$

1.
$$y = \frac{x+3}{(x-4)(x+3)}$$
 2. $y = \frac{x-2}{x^2-4}$ **3.** $y = \frac{(x-3)(x+1)}{(x-2)}$

4.
$$y = \frac{3x(x+2)}{x(x+2)}$$
 5. $y = \frac{2}{(x+1)}$ **6.** $y = \frac{4x}{x^3 - 9x}$

5.
$$y = \frac{2}{(x+1)}$$

6.
$$y = \frac{4x}{x^3 - 9x}$$

Describe the vertical asymptotes and holes for the graph of each rational function.

22.
$$y = \frac{x-2}{(x+2)(x-2)}$$
 23. $y = -\frac{x}{x(x-1)}$ **24.** $y = \frac{5-x}{x^2-1}$

23.
$$y = -\frac{x}{x(x-1)}$$

24.
$$y = \frac{5-x}{x^2-1}$$

25.
$$y = \frac{x^2 - 2}{x + 2}$$

26.
$$y = \frac{x^2 - 4}{x^2 + 4}$$
 27. $y = \frac{x + 3}{x^2 - 9}$

27.
$$y = \frac{x+3}{x^2-9}$$