Compare the functions, denominators, asymptotes, and graphs below

The graphs of the rational functions $y=\frac{-2 x}{x^{2}+1}, y=\frac{1}{x^{2}-4}$, and $y=\frac{(x+2)(x-1)}{x+1}$ are shown below.

The graph of $y=\frac{x+1}{(x-1)(x+2)}$ is shown at the right. The zeros of the denominator are 1 and -2 . The graph has vertical asymptotes at those points.

2 is a zero of both the numerator and the denominator of the rational function $y=\frac{(x-2)(x+1)}{x-2}$. The graph of this function is the same as the graph of $y=x+1$, except it has a hole at $x=2$.

2 is a zero of both the numerator and the denominator of the rational function $y=\frac{x-2}{(x-2)(x-1)}$. The graph of this function is the same as the graph of $y=\frac{1}{x-1}$, except it has a hole at $x=2$.

2 is a zero of both the numerator and the denominator of the rational function $y=\frac{x-2}{(x-2)^{2}}$. The graph of this function is exactly the same as the graph of $y=\frac{1}{x-2}$. The vertical asymptote is $x=2$ and there is no hole.

Vertical Asymptotes

The rational function $f(x)=\frac{P(x)}{Q(x)}$ has a point of discontinuity for each real zero of $Q(x)$.

If $P(x)$ and $Q(x)$ have no common real zeros, then the graph of $f(x)$ has a vertical asymptote at each real zero of $Q(x)$.

If $P(x)$ and $Q(x)$ have a common real zero a, then there is a hole in the graph or a vertical asymptote at $x=a$.

EXADMPLE Finding Points of Discontinuity

For each rational function, find any points of discontinuity.
a. $y=\frac{1}{x^{2}+2 x+1}$
b. $y=\frac{-x+1}{x^{2}+1}$

For each rational function, find any points of discontinuity.
a. $y=\frac{1}{x^{2}-16}$
b. $y=\frac{x^{2}-1}{x^{2}+3}$
c. $y=\frac{x+1}{x^{2}+2 x-8}$

ExAMPLE Finding Vertical Asymptotes

Describe the vertical asymptotes and holes for the graph of each rational function. a. $y=\frac{x+1}{(x-2)(x-3)}$

$$
\text { b. } y=\frac{(x-2)(x-1)}{x-2}
$$

$$
\text { c. } y=\frac{(x-3)(x+4)}{(x-3)(x-3)(x+4)}
$$

Describe the vertical asymptotes and holes for the graph of each rational function.
a. $y=\frac{x-2}{(x-1)(x+3)}$
b. $y=\frac{x-2}{(x-2)(x+3)}$
c. $y=\frac{x^{2}-1}{x+1}$

Assignment:

Find any points of discontinuity for each rational function.

1. $y=\frac{x+3}{(x-4)(x+3)}$
2. $y=\frac{x-2}{x^{2}-4}$
3. $y=\frac{(x-3)(x+1)}{(x-2)}$
4. $y=\frac{3 x(x+2)}{x(x+2)}$
5. $y=\frac{2}{(x+1)}$
6. $y=\frac{4 x}{x^{3}-9 x}$

Describe the vertical asymptotes and holes for the graph of each rational function.
22. $y=\frac{x-2}{(x+2)(x-2)}$
23. $y=-\frac{x}{x(x-1)}$
24. $y=\frac{5-x}{x^{2}-1}$
25. $y=\frac{x^{2}-2}{x+2}$
26. $y=\frac{x^{2}-4}{x^{2}+4}$
27. $y=\frac{x+3}{x^{2}-9}$

