Infinite Sequences

One of the most natural ways to study patterns in mathematics is to look at an ordered progression of numbers, called a **sequence**. Here are some examples of sequences:

- **1.** 5, 10, 15, 20, 25
- **2.** 2, 4, 8, 16, 32, ..., 2^k , ...
- **3.** $\left\{ \frac{1}{k} : k = 1, 2, 3, \ldots \right\}$
- **4.** $\{a_1, a_2, a_3, \ldots, a_k, \ldots\}$, which is sometimes abbreviated $\{a_k\}$

The first of these is a **finite sequence**, while the other three are **infinite sequences**. Notice that in (2) and (3) we were able to define a rule that gives the kth number in the sequence (called the kth term) as a function of k. In (4) we do not have a rule, but notice how we can use subscript notation (a_k) to identify the kth term of a "general" infinite sequence. In this sense, an infinite sequence can be thought of as a *function* that assigns a unique number (a_k) to each natural number k.

EXAMPLE 1 Defining a Sequence Explicitly

Find the first 6 terms and the 100th term of the sequence $\{a_k\}$ in which $a_k = k^2 - 1$.

EXAMPLE 2 Defining a Sequence Recursively

Find the first 6 terms and the 100th term for the sequence defined recursively by the conditions:

$$b_1 = 3$$

$$b_n = b_{n-1} + 2$$
 for all $n > 1$.

Limits of Infinite Sequences

Just as we were concerned with the end behavior of functions, we will also be concerned with the end behavior of sequences.

DEFINITION Limit of a Sequence

Let $\{a_n\}$ be a sequence of real numbers, and consider $\lim_{n\to\infty} a_n$. If the limit is a finite number L, the sequence **converges** and L is the **limit of the sequence**. If the limit is infinite or nonexistent, the sequence **diverges**.

EXAMPLE 3 Finding Limits of Sequences

Determine whether the sequence converges or diverges. If it converges, give the limit.

(a)
$$\frac{1}{1}$$
, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, ..., $\frac{1}{n}$, ...

(b)
$$\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \dots$$

(d)
$$-1, 1, -1, 1, \ldots, (-1)^n, \ldots$$

EXAMPLE 4 Finding Limits of Sequences

Determine whether the sequence converges or diverges. If it converges, give the limit.

(a)
$$\left\{\frac{3n}{n+1}\right\}$$

(a)
$$\left\{ \frac{3n}{n+1} \right\}$$
 (b) $\left\{ \frac{5n^2}{n^3+1} \right\}$ (c) $\left\{ \frac{n^3+2}{n^2+n} \right\}$

(c)
$$\left\{ \frac{n^3 + 2}{n^2 + n} \right\}$$

Arithmetic and Geometric Sequences

There are all kinds of rules by which we can construct sequences, but two particular types of sequences dominate in mathematical applications: those in which pairs of successive terms all have a common difference (arithmetic sequences), and those in which pairs of successive terms all have a common quotient, or ratio (geometric sequences). We will take a closer look at these in this section.

DEFINITION Arithmetic Sequence

A sequence $\{a_n\}$ is an **arithmetic sequence** if it can be written in the form

$$\{a, a+d, a+2d, \ldots, a+(n-1)d, \ldots\}$$
 for some constant d.

The number d is called the **common difference**.

Each term in an arithmetic sequence can be obtained recursively from its preceding term by adding *d*:

$$a_n = a_{n-1} + d$$
 (for all $n \ge 2$).

EXAMPLE 5 Defining Arithmetic Sequences

For each of the following arithmetic sequences, find (a) the common difference, (b) the tenth term, (c) a recursive rule for the *n*th term, and (d) an explicit rule for the *n*th term.

- (1) -6, -2, 2, 6, 10, ...
- **(2)** ln 3, ln 6, ln 12, ln 24, . . .

DEFINITION Geometric Sequence

A sequence $\{a_n\}$ is a **geometric sequence** if it can be written in the form

$$\{a, a \cdot r, a \cdot r^2, \dots, a \cdot r^{n-1}, \dots\}$$
 for some nonzero constant r.

The number r is called the **common ratio**.

Each term in a geometric sequence can be obtained recursively from its preceding term by multiplying by r:

$$a_n = a_{n-1} \cdot r$$
 (for all $n \ge 2$).

EXAMPLE 6 Defining Geometric Sequences

For each of the following geometric sequences, find (a) the common ratio, (b) the tenth term, (c) a recursive rule for the *n*th term, and (d) an explicit rule for the *n*th term.

- **(1)** 3, 6, 12, 24, 48, . . .
- (2) 10^{-3} , 10^{-1} , 10^{1} , 10^{3} , 10^{5} , ...