In Exercises 1–6, write each sum using summation notation, assuming the suggested pattern continues.

1.
$$-7 - 1 + 5 + 11 + \cdots + 53$$

2.
$$2 + 5 + 8 + 11 + \cdots + 29$$

3.
$$1+4+9+\cdots+(n+1)^2$$

In Exercises 7–12, find the sum of the arithmetic sequence.

9. 1, 2, 3, 4, . . . , 80

11. 117, 110, 103, . . . , 33

12. 111, 108, 105, . . . , 27

In Exercises 13–16, find the sum of the geometric sequence.

13. 3, 6, 12, . . . , 12,288

14. 5, 15, 45, . . . , 98,415

16. 42, $-7, \frac{7}{6}, \ldots, 42 \left(-\frac{1}{6}\right)^9$

In Exercises 17–22, find the sum of the first n terms of the sequence. The sequence is either arithmetic or geometric.

17. 2, 5, 8, . . . ;
$$n = 10$$

19. 4,
$$-2$$
, 1, $-\frac{1}{2}$, ...; $n = 12$

21.
$$-1$$
, 11 , -121 , ...; $n = 9$

22.
$$-2$$
, 24, -288 , . . . ; $n = 8$

In Exercises 25–30, determine whether the infinite geometric series converges. If it does, find its sum.

25.
$$6 + 3 + \frac{3}{2} + \frac{3}{4} + \cdots$$

27.
$$\frac{1}{64} + \frac{1}{32} + \frac{1}{16} + \frac{1}{8} + \cdots$$

28.
$$\frac{1}{48} + \frac{1}{16} + \frac{3}{16} + \frac{9}{16} + \cdots$$

29.
$$\sum_{i=1}^{\infty} 3 \left(\frac{1}{4} \right)^{j}$$

30.
$$\sum_{n=1}^{\infty} 5\left(\frac{2}{3}\right)^n$$

In Exercises 31–34, express the rational number as a fraction of integers.

31. 7.14141414 . . .