9.3 Rational Functions and Their Graphs

Part 1: Points of Discontinuity

1. Read the definition of a rational function. Focus on the last sentence, "The domain of f(x) is all real numbers except those for which Q(x)=0." Now read the definition of "point of discontinuity". Finding points of discontinuity focuses mostly on the <u>denominator</u> of the rational function.

- b. Are there any asymptotes? _____
- c. Are there any breaks in the graph? _____
- d. Is this graph continuous?
- e. Set the denominator equal to 0 and solve.

f. What does your answer in part e mean after reading #1?

3. Graph the following in desmos and add a table for points. $y = \frac{1}{r^2 - 4}$

- a. Sketch it. Include any asymptotes and points.
- b. Are there any asymptotes? __
- c. Are there any breaks in the graph?
- d. Is this graph continuous?
- e. Set the denominator equal to 0 and solve.

f. What does your answer in part e mean after reading #1?

4. Graph the following in desmos and add a table for points. $y = \frac{(x+2)(x-1)}{x+1}$

- a. Sketch it. Include any asymptotes and points.
- b. Are there any asymptotes?
- c. Are there any breaks in the graph? _____
- d. Is this graph continuous?
- e. Set the denominator equal to 0 and solve.

f. What does your answer in part e mean after reading #1?

5. How would you summarize the process of finding a point of discontinuity?

Name:	Date:	Period:
Name	Date	i cilou

Part 2: Finding Vertical Asymptotes

- 1. Graph the following function in desmos. Sketch it. $y = \frac{x+1}{(x-1)(x+2)}$
 - a. Set the denominator equal to zero and solve. _____
- _ ←
- b. Set the numerator equal to zero and solve.
 c. The solutions in **part a** represent the zeros of the denominator w
- c. The solutions in **part a** represent the zeros of the denominator which are your <u>vertical asymptotes</u>. The answer in **part b** represents the <u>x-intercept</u>. Graph both parts.

- e. Read the properties of vertical asymptotes. What properties are illustrated here?
- 2. Graph the following function in desmos. Sketch it. $y = \frac{(x-2)(x+1)}{(x-2)}$
 - a. Set the denominator equal to zero and solve.
 - b. Set the numerator equal to zero and solve.
 - c. Simplify the function. What do you get?_____
 - d. Since the graph simplifies, the solutions in **part a** represent the zeros of the denominator which are your <u>holes</u>. The answer in **part b** represents the <u>x-intercept</u>. Graph both parts.
 - e. Foil the numerator. What do you notice about the degrees of the numerator and denominator? _____

- f. Read the properties of vertical asymptotes. What properties are illustrated here?
- 3. Graph the following function in desmos. Sketch it. $y = \frac{(x-2)}{(x-2)(x-1)}$
 - a. Set the denominator equal to zero and solve. _____
 - b. Set the numerator equal to zero and solve.
 - c. Simplify the function. What do you get?____
 - d. Since the graph simplifies, the solutions in **part a** represent the a <u>hole</u> and a <u>vertical asymptote</u>. The answer in **part b** represents the <u>hole</u> since the graph simplifies. <u>A hole is a value that is a "zero" for both the numerator and denominator.</u> Graph both parts and convert it to a table. To graph a hole put an empty point at that value. What do you notice about x=2 in the table?

e. Read the properties of vertical asymptotes. What properties are illustrated here?

Name:	Date:	Period:
4. Graph the following function in desmos. Convert it to	a table. Sketch it. $y = \frac{x-2}{(x-2)^2}$	<u>†</u>
a. Set the denominator equal to zero, solve and ske	etch it	
b. Set the numerator equal to zero, solve, and plot i		
c. Simplify the function. What cancels out? What do		
d. Since the graph simplifies, the common factor is		
a "zero" for both the numerator and denominator.		
equal to zero, solve, substitute it into the simplifie	•	
hole's y-coordinate and plot an empty point at that	_	
e. What properties of vertical asymptotes are illustra	ated here?	
Part 3: Finding Horizontal Asymp 5. Graph the following function in desmos. Convert it to		+
	x-2	
a. Set the denominator equal to zero, solve and ske	etch it	
b. Set the numerator equal to zero, solve and plot it		
c. Simplify the function by using long division. What	do you get?	
d. What is the horizontal asymptote of part c? Sket	ch it +	
e. Compare the degree of the numerator to the deg	ree of the denominator. What	
do you notice?		
f. Based on the properties of horizontal asymptotes	and your answer in part e ,	
what conclusion(s) can you make?		
g. Using the table, pick enough points to the left and each branch. Plot and sketch your graph. 6. Consider the problems from Part 2. a. Part 2 #1: i. Foil the denominator. ii. Compare the degrees of the numerator and diii. Based on your answer in 6aii and the propert make? b. Part 2 #2: i. Foil the numerator. ii. Compare the degrees of the numerator and diii. Based on your answer in 6bii and the propert make?	denominator. What do you notice? ies of horizontal asymptotes, what denominator. What do you notice? ies of horizontal asymptotes, what	o ut conclusion can you
c. Part 2 #3:		
i. Foil the denominator.		
ii. Compare the degrees of the numerator and d		·
iii. Based on your answer in 6cii and the properti make?	ies of horizontal asymptotes, wha	
d. Part 2 #4:		
i. Foil the numerator		
ii. Compare the degrees of the numerator and d		
iii. Based on your answer in 6dii and the propert	ies of horizontal asymptotes, wha	t conclusion can you

make? ___

Part 4: Curve Sketching

You will use all the skills and strategies presented in the previous parts to sketch the graph of a rational function.

1. Consider
$$y = \frac{(x+6)}{(x-2)(x+3)}$$

- a. Find any vertical asymptote(s). Sketch them.
- b. Find any horizontal asymptotes(s) Sketch them.
- c. Find any holes. Sketch them.
- d. Find any x-intercepts. Sketch them.
- e. Find any y-intercepts. Sketch them. ___
- f. Pick enough points to the left and right of any vertical asymptotes or holes to generate points to plot. Use your table to help you. Connect them.
- g. Graph the function in desmos and compare.

2. Consider
$$y = \frac{-4x}{x^3 - 4x}$$

- a. Find any vertical asymptote(s). Sketch them.
- b. Find any horizontal asymptotes(s) Sketch them.
- c. Find any holes. Sketch them. __
- d. Find any x-intercepts. Sketch them.
- e. Find any y-intercepts. Sketch them. _____
- f. Pick enough points to the left and right of any vertical asymptotes or holes to generate points to plot. Use your table to help you. Connect them.
- g. Graph the function in desmos and compare.

3. Consider
$$y = \frac{x(x+1)}{x+1}$$

- a. Find any vertical asymptote(s). Sketch them.
- b. Find any horizontal asymptotes(s) Sketch them.
- c. Find any holes. Sketch them.
- d. Find any x-intercepts. Sketch them.
- e. Find any y-intercepts. Sketch them.
- f. Pick enough points to the left and right of any vertical asymptotes or holes to generate points to plot. Use your table to help you. Connect them.
- g. Graph the function in desmos and compare.

4. Consider
$$y = \frac{x+4}{x-4}$$

- a. Find any vertical asymptote(s). Sketch them.
- b. Find any horizontal asymptotes(s) Sketch them.
- c. Find any holes. Sketch them.
- d. Find any x-intercepts. Sketch them.
- e. Find any y-intercepts. Sketch them.
- f. Pick enough points to the left and right of any vertical asymptotes or holes to generate points to plot. Use your table to help you. Connect them.
- g. Graph the function in desmos and compare.

