DEFINITION Slope of a Line

The **slope** of the nonvertical line through the points (x_1, y_1) and (x_2, y_2) is

means
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$
.

If the line is vertical, then $x_1 = x_2$ and the slope is undefined.

DEFINITION Point-Slope Form of an Equation of a Line

The **point-slope form** of an equation of a line that passes through the point (x_1, y_1)

and has slope m is

$$y - y_1 = m(x - x_1).$$

$$5 \log e$$

$$24$$

$$y - 1 = \frac{3}{4}(x + 2)$$

DEFINITION Slope-Intercept Form of an Equation of a Line

The **slope-intercept form** of an equation of a line with slope m and y-intercept

Use a Graphing Utility

Draw the graph of 2x + 3y = 6.

$$\frac{3y}{3} = -\frac{2x}{3} + \frac{1}{3}$$

$$y = -\frac{3}{3} \times + 2$$

$$(0,2)$$
 $(3,0)$

Parallel and Perpendicular Lines

- 1. Two nonvertical lines are parallel if and only if their slopes are equal.
- 2. Two nonvertical lines are perpendicular if and only if their slopes m_1 and m_2 are opposite reciprocals. That is, if and only if

$$m_1 = -\frac{1}{m_2}.$$

Finding an Equation of a Perpendicular Line

Find an equation of the line through P(2, -3) that is perpendicular to the line L with equation 4x + y = 3. Support the result with a grapher.

$$y = -4x + 3$$

$$m_1 = -4$$

$$m_2 = \frac{1}{4}$$

$$y+3 = \frac{1}{4}(x-2)$$

 $y+3 = \frac{1}{4}x - \frac{1}{2}$
 $y = \frac{1}{4}x - \frac{1}{2}$

[-4.7, 4.7] by [-5.1, 1.1]