DEFINITION Slope of a Line

The **slope** of the nonvertical line through the points (x_1, y_1) and (x_2, y_2) is

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}.$$

If the line is vertical, then $x_1 = x_2$ and the slope is undefined

DEFINITION Point-Slope Form of an Equation of a Line

The **point-slope form** of an equation of a line that passes through the point (x_1, y_1)

(-2,6)

and has slope m is

$$M = \frac{1}{3}$$

$$y - y_1 = m(x - x_1).$$

$$y - y_1 = m(x - x_1).$$

 $y - b = \frac{1}{3}(x+2)$

DEFINITION Slope-Intercept Form of an Equation of a Line

The **slope-intercept form** of an equation of a line with slope m and y-intercept

(0, b) is

Forms of Equations of Lines

General form:

$$Ax + By + C = 0$$
 A and B not both zero

Slope-intercept form
$$3\left(9-\frac{1}{3}\times+\frac{29}{3}\right)$$
 $y=mx+b$

Slope-intercept form3
$$(y-3)x+20$$
 $y=mx+b$
Point-slope form: $3y-x+20$ $y-y_1=m(x-x_1)$
 $-x+3y-20=0$ $x=a$

Vertical line:
$$^{\circ \circ} \times -35 + 20 = 0$$
 $x = 0$

Horizontal line:
$$y = b$$

Use a Graphing Utility

Draw the graph of 2x + 3y = 6.

Parallel and Perpendicular Lines

$$M_{1} = M_{2}$$

- 1. Two nonvertical lines are parallel if and only if their slopes are equal.
- 2. Two nonvertical lines are perpendicular if and only if their slopes m_1 and m_2 are opposite reciprocals. That is, if and only if

$$m_1 = -\frac{1}{m_2}.$$

Finding an Equation of a Perpendicular Line

Find an equation of the line through P(2, -3) that is perpendicular to the line L with equation 4x + y = 3. Support the result with a grapher.

$$5 = -4x + 3$$
 $m_1 = -4$
 $m_2 = \frac{1}{4}$

$$5+3=\frac{1}{4}(x-2)$$

 $5+3=\frac{1}{4}x-\frac{1}{2}-3$
 $5=\frac{1}{4}x-\frac{2}{3}$

[-4.7, 4.7] by [-5.1, 1.1]