DEFINITION Slope of a Line

The slope of the nonvertical line through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

If the line is eertical, then $x_{1}=x_{2}$ and the slope is undefined

DEFINITION Point-Slope Form of an Equation of a Line
The point-slope form of an equation of a line that passes through the point $\left(x_{1}, y_{1}\right)$ and has slope m is

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right)
\end{aligned}
$$

DEFINITION Slope-Intercept Form of an Equation of a Line

The slope-intercept form of an equation of a line with slope m and y-intercept $\underline{(0, b)}$ is

$$
y=m x+b .
$$

$$
\begin{aligned}
& y-6=\frac{1}{3}(x+2) \\
& y-6=\frac{1}{3} x+\frac{2}{3} \\
& \text { +6 +6 } \\
& y=\frac{1}{3} x+\frac{20}{3} \text { y-int } \\
& m \quad(0,20 / 3)
\end{aligned}
$$

Forms of Equations of Lines

General form: $\quad \triangle A x+B y+C=0, A$ and B not both zero Slope-intercept form $3\left(y-\frac{1}{3} x+\frac{20}{3}\right) y=m x+b$ Point-slope form: $\begin{aligned} & 3 y=x+20 \\ & -x+3 y-20=0\end{aligned}$
Vertical line: on $x-3 y+20=0 \quad x=a$
Horizontal line:

$$
y=b
$$

Use a Graphing Utility

Draw the graph of $2 x+3 y=6$.

$$
\begin{gathered}
\frac{3 y}{3}=\frac{-2 x}{3}+\frac{6}{3} \\
y=-\frac{2}{3} x+2 \\
m=-\frac{2}{3}
\end{gathered}
$$

Parallel and Perpendicular Lines $\quad m_{1}=m_{2}$

1. Two nonvertical lines are parallel if and only if their slopes are equal.
2. Two nonvertical lines are perpendicular if and only if their slopes m_{1} and m_{2} are opposite reciprocals. That is, if and only if

$$
\begin{aligned}
& m_{1}=-\frac{2}{3} \\
& m_{2}=\frac{3}{2}
\end{aligned}
$$

$$
m_{1}=-\frac{1}{m_{2}}
$$

Finding an Equation of a
Perpendicular Line
Find an equation of the line through $P(2,-3)$ that is perpendicular to the line L with equation $4 x+y=3$. Support the result with egrapher.

$$
\begin{array}{ll}
y=-4 x+3 & y+3=\frac{1}{4}(x-2) \\
m_{1}=-4 & y+3=\frac{1}{4} x-\frac{1}{2} \\
\therefore m_{2}=\frac{1}{4} & y=\frac{1}{4} x-\frac{7}{2}
\end{array}
$$

