The Law of Sines

Law of Sines
In any $\triangle A B C$ with angles A, B, and C opposite sides a, b, and c, respectively, the following equation is true:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} .
$$

Solving Triangles (AAS, ASA)
EXAMPLE 1 Solving a Triangle Given Two Angles and a Side
Solve $\triangle A B C$ given that $\angle A=36^{\circ}, \angle B=48^{\circ}$, and $a=8$.

$$
\begin{aligned}
& \angle B=48^{\circ}, \text { and } a=8 . \\
& \angle C=180^{\circ}-36^{\circ}-48^{\circ}=96^{\circ} \quad c=13.54 \\
& \frac{\sin 36^{\circ}}{8}=\frac{\sin 48^{\circ}}{b} \quad \frac{\sin 96^{\circ}}{c}=\frac{\sin 36^{\circ}}{8} \\
& \sin 36^{\circ} \\
& \angle \frac{8 \sin 48^{\circ}}{\sin 36^{\circ}}=10.11
\end{aligned}
$$

EXAMPLE 2 Solving a Triangle Given Two Sides and an Angle
Solve $\triangle A B C$ given that $a=7, b=6$, and $\angle A=26.3^{\circ}$.

$$
\begin{aligned}
& \frac{\sin 26.3^{\circ}}{7}=\frac{\sin B}{6} \\
& \frac{7 \sin B=6}{7} B \frac{\sin 26.3^{\circ}}{7} \\
& \angle B=\sin ^{-1}\left[\frac{6 \sin 26.3^{\circ}}{7}\right] \\
& \angle B=22.3^{\circ} \\
& \angle C=180^{\circ}-26.3^{\circ}-22.3^{\circ} \\
& \angle C=131.4^{\circ}
\end{aligned}
$$

EXAMPLE 4 Locating a Fire
Forest Ranger Chris Johnson at ranger station A sights a fire in the direction 32° east of north. Ranger Rick Thorpe at ranger station $B, 10$ miles due east of A, sights the same fire on a line 48° west of north. Find the distance from each ranger station to the fire.

$$
\begin{array}{ll}
180-58-42=80 & \\
\frac{\sin 80^{\circ}}{10}=\frac{\sin 58^{\circ}}{a} & a=8.6 \\
\frac{\sin 80^{\circ}}{10}=\frac{\sin 42^{\circ}}{b} & b=6.8
\end{array}
$$

EXAMPLE 3 Handling the Ambiguous Case

Solve $\triangle A B C$ given that $a=6, b=7$, and $\angle A=30^{\circ}$.

EXAMPLE 3 Handling the Ambiguous Case
Solve $\triangle A B C$ given that $a=6, b=7$, and $\angle A=30^{\circ}$.

$$
\begin{aligned}
& \frac{\sin 30^{\circ}}{6}=\frac{\sin B}{7} \\
& \sin B=\frac{7 \sin 30^{\circ}}{6} \\
& \angle B=\sin ^{-1}\left(\frac{7 \sin 30^{\circ}}{6}\right)=35.7^{\circ} \\
& \angle C=180-30-35.7^{\circ}=114.3^{\circ} \\
& \frac{\sin 114.3^{\circ}}{C}=\frac{\sin 30^{\circ}}{6} \\
& C=10.9
\end{aligned}
$$

