The Law of Sines

Law of Sines

In any $\triangle ABC$ with angles A, B, and C opposite sides a, b, and c, respectively, the following equation is true:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.$$

EXAMPLE 1 Solving a Triangle Given Two Angles and a Side

Solve $\triangle ABC$ given that $\angle A = 36^{\circ}$, $\angle B = 48^{\circ}$, and a = 8.

$$2C = 180^{\circ} - 36^{\circ} - 48^{\circ} = 96^{\circ} \qquad C = 13.54$$

$$2C = 180^{\circ} - 36^{\circ} - 48^{\circ} = 96^{\circ} \qquad C = 13.54$$

$$\frac{5i h 36^{\circ}}{8} = \frac{5i h 48^{\circ}}{6} = \frac{5i h 36^{\circ}}{6} = \frac{5i h 36^{\circ}}{8} = 10.11$$

$$\frac{5i h 36^{\circ}}{8} = \frac{85i h 48^{\circ}}{5i h 36^{\circ}} = 10.11$$

EXAMPLE 2 Solving a Triangle Given Two Sides and an Angle

Solve $\triangle ABC$ given that a = 7, b = 6, and $\angle A = 26.3^{\circ}$.

 $\frac{5i \, h}{c} \frac{131-4^{\circ}}{-} = \frac{5i \, h}{26-3^{\circ}}$ c = 11.85

$$5.19 \times 10.3^{\circ} = 5.19 \times 10.3^{\circ}$$

 $7.5.19 \times 10.3^{\circ} = 6.5.19 \times 10.3^{\circ}$
 $7.5.19 \times 10.3^{\circ} = 6.5.19 \times 10.3^{\circ}$

EXAMPLE 4 Locating a Fire

Forest Ranger Chris Johnson at ranger station A sights a fire in the direction 32° east of north. Ranger Rick Thorpe at ranger station B, 10 miles due east of A, sights the same fire on a line 48° west of north. Find the distance from each ranger station to the fire.

EXAMPLE 3 Handling the Ambiguous Case

Solve $\triangle ABC$ given that $a=6, b=7, \text{ and } \angle A=30^{\circ}.$

EXAMPLE 3 Handling the Ambiguous Case

Solve $\triangle ABC$ given that a = 6, b = 7, and $\angle A = 30^{\circ}$.

$$\frac{51h 5.7}{6} = \frac{51h30}{6}$$

$$6 = 1.2$$

$$6 = 180 - 35.7 = 144.3$$

$$10 = 180 - 144.3 - 30 = 5.7$$

$$5in 30^{\circ}$$
 $5in 3$
 $5in 30^{\circ}$ $5in 30^{\circ}$
 $2B = 5in^{\circ} \left(\frac{75in30^{\circ}}{6}\right) = 35.7^{\circ}$
 $2C = 180 - 30 - 35.7^{\circ} = 114.3^{\circ}$
 $5in 114.3^{\circ} = 5in 30^{\circ}$
 $C = 10.9$