The Law of Cosines

Law of Cosines

Let $\triangle A B C$ be any triangle with sides and angles labeled in the usual way (Figure 5.22).

Then

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

FIGURE 5.22 A triangle with the usual labeling (angles A, B, C; opposite sides a, b, c).

Solving Triangles (SAS, SSS)
While the Law of Sines is the tool we use to solve triangles in the AAS and ASA cases, the Law of Cosines is the required tool for SAS and SSS. (Both methods can be used in the SSA case, but remember that there might be 0,1 , or 2 triangles.)

EXAMPLE 1 Solving a Triangle (SAS)
Solve $\triangle A B C$ given that $a=11, b=5$, and $C=20^{\circ}$.

$$
\begin{aligned}
& C^{2}=a^{2}+b^{2}-2 a b \cos C \\
& C^{2}=1^{2}+5^{2}-2(11) \cos 20^{\circ} \\
& C=\sqrt{\sin n} \\
& C \approx 6.53
\end{aligned}
$$

EXAMPLE 2 Solving a Triangle (SSS)
Solve $\triangle A B C$ if $a=9, b=7$, and $c=5$.

$$
\angle B=50.7^{5}
$$

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \frac{a^{2}-b^{2}-c^{2}}{-2 b c}=\frac{-2 b c \cos A}{-2 b c} \\
& \frac{b^{2}+c^{2}-a^{2}}{2 b c}=c \cos A \\
& L_{A}=\cos ^{-1}\left(\frac{7^{2}+5^{2}-81}{2(7) 5}\right)=\cos ^{-1}\left(\frac{49+25-81}{70}\right) \\
& \angle A=95.7^{\circ}
\end{aligned}
$$

Triangle Area and Heron's Formula
Area of a Triangle

$$
\triangle \text { Area }=\frac{1}{2} \sqrt{b \circ \sin A} \frac{1}{2} a c \sin B \frac{1}{2}(a b \sin C)
$$

Area of
Example 1:

$$
\begin{aligned}
& a=11 \\
& b=5 \\
& \angle c=20^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{2}(5) 11 \sin 20^{\circ} \\
\frac{55}{2} \sin 20^{\circ} \\
9.4 \text { units }
\end{gathered}
$$

THEOREM Heron's Formula
Let a, b, and c be the sides of $\triangle A B C$, and let s denote the semiperimeter

$$
S=(a+b+c) / 2
$$

Then the area of $\triangle A B C$ is given by Area $=\sqrt{s(s-a)(s-b)(s-c)}$.

Area of
Example 2:

$$
\begin{aligned}
& a=9 \\
& b=7 \\
& c=5
\end{aligned}
$$

$$
S=\frac{9+7+5}{2} \sqrt{10.5(10.5-9)(10.5-7)(10.5-5)}
$$

$$
S=10.5
$$

Area of Δ in Example 2 is 17.4 units 2

