Write

Write a biconditional statement for the Triangle Proportionality Theorem. Include a sketch to demonstrate your understanding.

Remember

The Angle Bisector/Proportional Side Theorem states: "A bisector of an angle in a triangle divides the opposite side into two segments whose lengths are in the same ratio as the lengths of the sides adjacent to the angle."

The Triangle Proportionality Theorem states: "If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides proportionally."

The Converse of the Triangle Proportionality Theorem states: "If a line divides the two sides proportionally, then it is parallel to the third side."

The Proportional Segments Theorem states: "If three parallel lines intersect two transversals, then they divide the transversals proportionally."

The Triangle Midsegment Theorem states: "The midsegment of a triangle is parallel to the third side of the triangle and half the measure of the third side of the triangle."

Practice

- 1. Calculate the indicated length in each figure.
 - a. \overline{KN} bisects $\angle K$. Calculate MN.

b. \overline{SQ} bisects $\angle S$. Calculate SR.

2. The figure shows a truss on a bridge. \overline{BF} bisects $\angle CBE$. Use this information to calculate EF and CF.

3. Determine the value of *x* in each figure.

a.

b.

c.

d.

4. Use the diagram and given information to write two statements that can be justified using the Triangle Midsegment Theorem.

a.

u.

Given: △*ABC*

D is the midpoint of \overline{AB} . *E* is the midpoint of \overline{BC} .

b.

Given: △RST

V is the midpoint of \overline{RT} . *W* is the midpoint of \overline{RS} .