Assignment

Write

Describe how the terms *constant difference, slope,* and *average rate of change* are related.

Remember

The explicit formula of an arithmetic sequence can be rewritten as a linear function in the general form f(x) = ax + b, where aand b are real numbers, using algebraic properties. The constant difference of an arithmetic sequence is always equal to the slope of the corresponding linear function.

Practice

- 1. Rakesha claims that the equation f(n) = 5n 7 is the function notation for the sequence that is represented by the explicit formula $a_n = -2 + 5(n 1)$. James doesn't understand how this can be the case.
 - a. Help James by listing the steps to write the explicit formula of the given sequence in function notation. Provide a rationale for each step.
 - b. Graph the function. Label the first 5 values of the sequence on the graph.

b.

2. Determine whether each table of values represents a linear function. For those that represent linear functions, write the function. For those that do not, explain why not.

x	<i>f</i> (<i>x</i>)		
3	14		
4	18		
5	23		
6	29		
	3 4 5		

x	<i>f</i> (<i>x</i>)		
0	2		
1	-1		
2	-4		
3	-7		

c.	X	<i>f</i> (<i>x</i>)
	1	11
	2	16
	3	21
	4	26

3. Calculate the average rate of change for each linear function using the formula. Show your work.

a.	x	<i>f</i> (<i>x</i>)
	3	-4
	7	4
	9	8
	12	14

Stretch

Craig left his house at noon and drove 50 miles per hour until 3 PM. Then he drove the next 5 hours at 70 miles per hour. Graph Craig's driving trip and calculate the average rate of change for the entire trip.

Review

Evaluate each function for the given values.

1. $f(x) = 3x - 10$	2. $f(x) = 6$	3. $f(x) = 9x + 7 - 3x$	
a. <i>f</i> (0)	a. <i>f</i> (0)	a. <i>f</i> (0)	
b. <i>f</i> (5)	b. <i>f</i> (–2)	b. <i>f</i> (0.5)	

4. The linear regression equation for the given data is y = -x + 19.7. Complete the table for the linear regression equation, rounding your answers to the nearest tenth. Then construct and interpret a residual plot.

x	У	Predicted Value Residual Valu	
2	17		
4	16		
6	15		
8	12		
10	9		
12	8		

5. The linear regression equation for the given data is y = 3.93x - 11.33, r = 0.8241. Consider the scatterplot, the correlation coefficient, and the corresponding residual plot. State whether a linear model is appropriate for the data.

X	2	4	6	8	10	12
У	9	2	1	12	25	48

