Warm Up Solve for each unknown angle measure. ## **Angles Can Be Very Complementary!** Consider ∠ABC and ∠DEF. 1. Use a protractor to determine the measure of each angle. 2. Trace $\angle ABC$ on a sheet of patty paper. Align \overline{BC} and \overline{ED} and then trace the ray from point B to point F on your patty paper to create $\angle ABF$. 3. What type of angle is $\angle ABF$? Justify your answer. Angle ABC and angle DEF are complementary angles. The two acute angles in a right triangle are always complementary angles. Consider $\triangle PKR$. - 4. Explain how you know that $\angle P$ and $\angle R$ are complementary angles. - 5. Write a ratio that represents $\sin \angle P$. - 6. Write a ratio that represents $\cos \angle R$. - 7. What do you notice about the ratios representing $\sin \angle P$ and $\cos \angle R$? - 8. How does the ratio representing $\cos \angle P$ compare to the ratio representing the $\sin \angle R$? ## 1. Use $\triangle ABC$ to complete the table. | Reference Angle | sin | cos | tan | csc | sec | cot | |-----------------|-----|-----|-----|-----|-----|-----| | A | | | | | | | | В | | | | | | | 1. Use the complementary angle relationships, your knowledge of the side relationships of special right triangles, and the Pythagorean Theorem to complete the chart with the numeric ratios for each triangle. | Reference Angle | sin | cos | tan | csc | sec | cot | |-----------------|-----|-----|-----|-----|-----|-----| | 30° | | | | | | | | 60° | | | | | | | | Reference Angle | sin | cos | tan | csc | sec | cot | |-----------------|-----|-----|-----|-----|-----|-----| | 45° | | | | | | | 1. At an altitude of 1000 feet, a balloonist measures the angle of depression from the balloon to the landing zone. The measure of that angle is 15°. How far is the balloon from the landing zone? An aircraft uses radar to spot another aircraft 8000 feet away at a 12° angle of depression. Sketch the situation and determine the vertical and horizontal separation between the two aircraft. An angle of depression is an angle below horizontal.