1. Describe the effects of changes to the C-value and D-value on each characteristic given.

a. Domain

c. End behavior

$r(x) = A\left(\frac{1}{B(x-C)}\right) + D$

Rational functions are any functions of the form $f(x) = \frac{P(x)}{Q(x)}$ where P(x) and Q(x) are polynomial functions, and $Q(x) \neq 0$.

2. What determines a vertical asymptote? When does a rational function have more than one vertical asymptote?

Rational functions are any functions of the form $f(x) = \frac{P(x)}{Q(x)}$ where P(x) and Q(x) are polynomial functions, and $Q(x) \neq 0$.

3. Given $f(x) = \frac{1}{x}$, sketch each transformation and explain your process.

a.
$$g(x) = f(x) + 5$$

b.
$$h(x) = f(x + 5)$$

- 4. Write a rational function g(x) that matches the given characteristics. Then sketch the function.
 - a. Vertical asymptote at x = 2Horizontal asymptote at y = 1
- b. Vertical asymptote at x = 1, x = -5Horizontal asymptote at y = -3

$$g(x) =$$

$$g(x) =$$

c. For
$$f(x) = \frac{1}{x}$$
, $g(x) = f(x - 2) - 4$ d. For $f(x) = \frac{1}{x}$, $g(x)$ shifts

$$g(x) =$$

d. For
$$f(x) = \frac{1}{x}$$
, $g(x)$ shifts $f(x)$ up and to the left.

$$g(x) =$$

M2-149

1. Analyze the methods Jodi and Theresa each used to graph the rational function $j(x) = \frac{1}{x^2 - 4}$.

Jodi

I created a table and plotted the points.

E	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
-	<u>1</u> 32	1 21	12	- 15	undefined	$-\frac{1}{3}$	 - -	$-\frac{1}{3}$	undefined	- 5	1/12	1 21	<u>l</u> 32

I see that vertical asymptotes occur at x = -2 and x = 2, where the denominator is 0 and the output is undefined.

Theresa

I graphed the function $f(x) = x^2 - 4$. The function j(x) is the reciprocal of f(x), so I took the reciprocal of several key points and sketched the graph.

The zeros of the function $f(x) = x^2 - 4$ are (-2, 0) and (2, 0) that become asymptotes at x = -2 and x = 2 in the function $j(x) = \frac{1}{x^2 - 4}$. The y-intercept shifts from (0, -4) in f(x) to $\left(0, \frac{-1}{4}\right)$ in j(x). By plotting a couple key points and recognizing that a horizontal asymptote is at y = 0, I can sketch the function.

a. Which method do you think is most efficient? Explain your reasoning.

- b. Which method do you think is the most accurate? Explain your reasoning.
- c. How does a vertical asymptote affect the domain of a function?

2. Without technology, sketch each function and then identify the key characteristics.

a.
$$g(x) = \frac{1}{(x-2)(x+4)}$$

Domain:

Asymptote(s):

Range:

y-intercept:

b.
$$g(x) = \frac{2}{x^2 - 2x - 8}$$

Domain:

Asymptote(s):

M2-151

Range:

y-intercept:

c.
$$h(x) = \frac{1}{x^2 + 3x - 10}$$

Domain:

Asymptote(s):

M2-151

Range:

y-intercept: