Warm-up:

Graph the function shown and reflect it over the x-axis

Recall that a function $t(x)$ of the form $t(x)=f(x)+D$ is a vertical translation
of the function $f(x)$. The value $|D|$ describes how many units up or down the graph of the original function is translated.
4. Describe each graph in relation to the basic function $g(x)=|x|$. Then use coordinate notation to represent the vertical translation.
a. $f(x)=g(x)+D$ when $D>0$
b. $f(x)=g(x)+D$ when $D<0$
c. Each point (x, y) on the graph of $g(x)$ becomes the point \qquad on $f(x)$.

Consider these absolute value functions.

$$
\begin{aligned}
& g(x)=|x| \\
& j(x)=2|x|
\end{aligned}
$$

$$
k(x)=\frac{1}{2}|x|
$$

$$
p(x)=-|x|
$$

5. Use technology to graph each function. Then, sketch and label the graph of each function.

6. Write the functions $j(x), k(x)$, and $p(x)$ in terms of the basic function $g(x)$. Then describe the transformations of each function.
7. Describe each graph in relation to the basic function $\boldsymbol{g}(x)=|x|$. Then use coordinate notation to represent the vertical translation.
a. $f(x)=A \cdot g(x)$ when $A>1$
b. $f(x)=A \cdot g(x)$ when $A<0$
c. $f(x)=A \cdot g(x)$ when $0<A<1$
d. Each point (x, y) on the graph of $g(x)$ becomes the point \qquad on $f(x)$.

A reflection of a
graph is the mirror image of the graph about a line

You know that changing the A-value of a function to its opposite reflects the function across a horizontal line. But the line of reflection for the function might be different depending on how you write the transformation and the order the transformations are applied.

```
of reflection.
of reflection.
```

```
A line of reflection is
the line that the graph
is reflected across.
A horizontal line of
reflection affects
the y-coordinates.
```

8. Josh and Vicki each sketched a graph of the function
$b(x)=-|x|-3$ using different strategies. Write the step-by-step reasoning used by each student.

Josh

Step I:

Step 2:

Step 3:

Step I:

Step 2:

Step 3:
9. Explain how changing the order of the transformations affects the line of reflection.

Given the function $f(x)=|x|$. Use the coordinate plane shown to answer Questions 10 through 14.
10. Consider the function $a(x)=2 f(x)+1$.
a. Use coordinate notation to describe how each point (x, y) on the graph of $f(x)$ becomes a point on the graph of $a(x)$.

b. Graph and label $a(x)$ on the coordinate plane shown.
11. Consider the function $b(x)=-2 f(x)+1$.
a. Use coordinate notation to describe how each point (x, y) on the graph of $f(x)$ becomes a point on the graph of $b(x)$.
b. Graph and label $b(x)$ on the same coordinate plane shown.
13. Consider the function $-a(x)$.
a. Use coordinate notation to describe how each point (x, y) on the graph of $a(x)$ becomes a point on the graph of $-a(x)$.
b. Graph and label $-a(x)$ on the coordinate plane shown.
14. Describe the graph of $-a(x)$ in terms of $a(x)$.

