Identify all transformations being performed on $f(x)=-2|x|-3 ?$
Graph the function.


Consider these absolute value functions.

$$
g(x)=|x|
$$

$$
m(x)=|x-2|
$$

$$
n(x)=|x+2|
$$


15. Use technology to graph each function. Then, sketch and label the graph of each function. Describe how $m(x)$ and $n(x)$ relate to $g(x)$.

A function $t(x)$ of the form $t(x)=f(x-C)$ is a horizontal translation of the
function $f(x)$. The value $|C|$ describes the number of units the graph of $f(x)$ is translated right or left. If $C>0$, the graph is translated to the right.
If $C<0$, the graph is translated to the left.

The expression $x+C$ is the same as $x-(-C)$.
16. Write the functions $m(x)$ and $n(x)$ in terms of the basic function $g(x)$. Describe how changing the $C$-value in the functions $\boldsymbol{m}(x)$ and $n(x)$ horizontally translated the function $g(x)$.
17. Use coordinate notation to show how each point $(x, y)$ on the graph of $g(x)$ becomes a point on a graph that has been horizontally translated.


The argument of a function is the expression inside the parentheses.

For $y=f(x-C)$ the expression $x-C$ is the argument of the function.
a. $m(x)=2 f(x-1)$
b. $r(x)=\frac{1}{2} f(x+2)-2$


c. $w(x)=2 f(x+3)+1$
d. $v(x)=-2 f(x+3)+1$



