Warm Up

Evaluate each expression.

1.
$$|9 + (-4)|$$

$$2. |-1 -5|$$

3.
$$|4 \times (-6)|$$

4.
$$|0 \div (-2)|$$

You can solve many absolute value equations using inspection.

1. Graph the solution set of each equation on the number line given.

b.
$$|x| = 2$$

No Solution, absolute value can not be negative

c.
$$|x| = -3$$

d.
$$|x| = 0$$

One Solution

2. Write the absolute value equation for each solution set graphed.

The official rules of baseball state that all baseballs used during

professional games must be within a specified range of weights. The
baseball manufacturer sets the target weight of the balls at 145.045 grams

1. Sketch a graph that models the relationship between a manufactured baseball's weight, *x*, and its distance from the target weight, *y*. Explain how you constructed your sketch. Then write an absolute value equation to represent the situation and the graph.

on its machines.

$$d(x) = |x - 145.045|$$

- 2. The specified weight allows for a difference of 3.295 grams in the actual weight of a ball and the target weight. Since the weight must be within a distance of 3.295 grams from the target weight, y = 3.295.
 - a. Graph the equation y = 3.295 on the coordinate plane in Question 1.
 - b. What two equations can you write, without absolute values, to show the least acceptable weight and the greatest acceptable weight of a baseball? Explain your reasoning.

$$x-145.045 = 3.295$$
 $x-145.045 = -3.295$ $x = 148.34$ $x = 141.75$

c. Use the graph to write the solutions to the equations you wrote in part (b). Show your work.

The two equations you wrote can be represented by the **linear absolute value equation** |w - 145.045| = 3.295. To solve any absolute value equation, recall the definition of absolute value.

Worked Example

Consider this linear absolute value equation.

$$|a| = 6$$

There are two points that are 6 units away from zero on the number line: one to the right of zero, and one to the left of zero.

$$+(a) = 6$$
 or $-(a) = 6$
 $a = 6$ or $a = -6$

Now consider the case where a = x - 1.

$$|x - 1| = 6$$

If you know that |a| = 6 can be written as two separate equations, you can rewrite any absolute value equation.

$$+(a) = 6$$
 or $-(a) = 6$
 $+(x-1) = 6$ or $-(x-1) = 6$

2. Martina and Bob continued to solve the linear absolute value equation |x - 1| = 6 in different ways. Compare their strategies and then determine the solutions to the equation.

3. Solve each linear absolute value equation. Show your work.

a.
$$|x + 7| = 3$$

 $x + 7 = 3$ $x + 7 = -3$
 $x = -4$ $x = -10$

c.
$$|3x + 7| = -8$$

No Solution

b.
$$|x - 9| = 12$$

 $x - 9 = 12$ $x - 9 = -12$
 $x = 21$ $x = -3$

d.
$$|2x + 3| = 0$$

One Solution

$$2x+3=0$$

$$2x=-3$$

$$x=-\frac{3}{2}$$

Before you solve each equation, think about the number of solutions each equation may have. You may be able to save yourself some work—and time!

Artie

$$|x| - 4 = 5$$

$$(x) - 4 = 5$$
 $-(x) - 4 = 5$
 $(x) = 9$ $-x = 9$
 $x = -9$

Donald

$$|x| - 4 = 5$$

 $|x| = 9$

$$(x) = 9$$
 $-(x) = 9$ $x = -1$

Cho

$$(x) - 4 = 5$$
 $-[(x) - 4] = 5$
 $x - 4 = 5$ $-x + 4 = 5$
 $x = 9$ $-x = 1$
 $x = -1$

Steve

$$|x|-4=5$$

$$(x) - 4 = 5$$
 $-(x) - 4 = -5$
 $x = 9$ $-x - 4 = -5$
 $-x = -1$
 $x = 1$

5. Solve each linear absolute value equation.

a.
$$|x| + 16 = 32$$

$$|x| = 16$$

$$x = 16 \text{ or } -16$$

b.
$$23 = |x - 8| + 6$$

$$17 = |x - 8|$$

$$x-8=17 \qquad x-8=-17$$
$$x=25 \qquad x=-9$$

c.
$$3|x-2| = 12$$

$$|x-2| = 4$$

$$x-2 = 4$$

$$x-2 = -4$$

x = 6 x = -2

d.
$$35 = 5|x + 6| - 10$$

$$45 = 5|x + 6|$$

$$9 = |x + 6|$$

$$x + 6 = 9$$

$$x = 3$$

$$x = -15$$