## **Warm Up**

Extract roots to rewrite each radical expression.

- 1. √48
- 2. √27
- 3. √32

## 1. Match each expression to an equivalent expression in the box. For each given expression, $a \neq 0$ .



b. 
$$\frac{a^3}{a^7}$$

c. 
$$a^4 \cdot a^{-4}$$

d. 
$$(ab^2)^2$$

e. 
$$(a^2)^2$$

f. 
$$\frac{a^6}{a^6}$$

g. 
$$(a^8 b^4)^{\frac{1}{2}}$$

h. 
$$a^2 \cdot a^{-6}$$

1

 $a^4$ 

 $a^{-4}$ 

 $a^2b^4$ 

 $a^4b^2$ 



2. Jamal says that the expression  $\frac{a^{\circ}}{a^{6}}$  is equivalent to 1 because any number, except 0, divided by itself is 1. Brittany says  $\frac{a^{6}}{a^{6}}$  is equal to 1 because  $a^{6-6} = a^{0}$ , and anything to the zero power, except zero, equals 1. Who's correct? Explain your reasoning.

3. Consider each expression in Question 1. If a and b are real numbers, what do you know about the value of each expression? Explain your reasoning.

| X  | $\chi^n = \chi^2$ | $\sqrt[n]{x^n} = \sqrt[2]{x^2}$ |
|----|-------------------|---------------------------------|
| -2 | 4                 | 2                               |
| -1 | 1                 | 1                               |
| 0  | 0                 | 0                               |
| 1  | 1                 | 1                               |
| 2  | 4                 | 2                               |



| x  | $\mathbf{x}^n = \mathbf{x}^3$ | $\sqrt[n]{x^n} = \sqrt[3]{x^3}$ |
|----|-------------------------------|---------------------------------|
| -2 | -8                            | -2                              |
| -1 | -1                            | -1                              |
| 0  | 0                             | 0                               |
| 1  | 1                             | 1                               |
| 2  | 8                             | 2                               |



| x  | $\chi^n = \chi^4$ | $\sqrt[n]{x^n} = \sqrt[4]{x^4}$ |
|----|-------------------|---------------------------------|
| -2 | 16                | 2                               |
| -1 | 1                 | 1                               |
| 0  | 0                 | 0                               |
| 1  | 1                 | 1                               |
| 2  | 16                | 2                               |



| x  | $\chi^n = \chi^5$ | $\sqrt[n]{x^n} = \sqrt[5]{x^5}$ |
|----|-------------------|---------------------------------|
| -2 | -32               | -2                              |
| -1 | -1                | -1                              |
| 0  | 0                 | 0                               |
| 1  | 1                 | 1                               |
| 2  | 32                | 2                               |



e. Analyze the representations for each value of *n*. What do you notice?

To extract a variable from a radical, the expression  $\sqrt[n]{x^n}$  can be written as:

$$\sqrt[n]{x^n} = \begin{cases} |x|, \text{ when } n \text{ is even} \\ x, \text{ when } n \text{ is odd} \end{cases}$$

## 2. Explain why $\sqrt[7]{x^7} = |x|$ is incorrect, for real values of x.

One way to say  $\sqrt[7]{x^7}$  is "the seventh root of x to the seven."



3. Asia and Melissa shared their work for extracting the root from  $\sqrt{x^4}$ , for real values of x.

Asia

$$\sqrt{x^4} = |x^2|$$

Melissa

$$\sqrt{X^4} = \sqrt{X^2 \cdot X^2}$$
$$= X^2$$

Who's correct? Explain your reasoning.