Warm-up:

Graph the function

 and its inverse

A function is a one-to-
one function if both
the function and its inverse are functions.

Use a straightedge to draw your lines.
b. $g(x)=-x+4$

\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})$
-2	
-1	
0	
1	
2	

Inverse of $\boldsymbol{g}(\boldsymbol{x})$	
\boldsymbol{x}	\boldsymbol{y}
	-2
	-1
	0
	1
	2

c. $h(x)=2$

\boldsymbol{x}	$\boldsymbol{h}(\boldsymbol{x})$
-2	
-1	
0	
1	
2	

d. $r(x)=|x|$

\boldsymbol{x}	$r(x)$
-2	
-1	
0	
1	
2	

Inverse of $r(x)$	
\boldsymbol{x}	\boldsymbol{y}
	-2
	-1
	0
	1
	2

For a one-to-one
function $f(x)$, the notation for its inverse is $f^{-1}(x)$. The notation for inverse, $f^{-1}(x)$, does not mean the same thing as x^{-1}. The expression x^{-1} can be rewritten as $\frac{1}{x}$; however, $f^{-1}(x)$ cannot be rewritten, because it is only used as notation. In other words, $f^{-1}(x) \neq \frac{1}{f(x)}$.

