Consider $f(x)=x^{2}+3 x+4$.
Evaluate the function for each
given value.

1. $f(1)=(1)^{2}+3(1)+4=8$

Key Terms

- parabola
- vertical motion model

2. $f(-1)=(-1)^{2}+3(-1)+4=2$
3. $f(2)=(2)^{2}+3(2)+4=14$
4. $f(-2)=(-2)^{2}+3(-2)+4=2$

- root

Squaring It Up

Maddie is using pennies to create a pattern.

1. Analyze the pattern and explain how to create Figure 5.

Add an additional row and column of pennies
2. How many pennies would Maddie need to create Figure 5?

Figure 6? Figure 7?
25 pennies, 36 pennies, 49 pennies
3. Which figure would Maddie create with exactly $\$ 4.00$ in pennies?

This would be figure 20
4. Write an equation to determine the number of pennies for any figure number. Define your variables.

$$
x \text { is the figure number, } \mathrm{f}(\mathrm{x}) \text { is the total } \quad f(x)=x^{2}
$$ number of pennies

5. Describe the function family to which this equation belongs.

There is no constant difference or constant ratio, it belongs to the quadratic function family

A dog trainer is fencing in an enclosure, represented by the shaded region
in the diagram. The trainer will also have two square-shaped storage units on either side of the enclosure to store equipment and other materials.
She can make the enclosure and storage units as wide as she wants, but she can't exceed 100 feet in total length.

1. Let s represent a side length, in feet, of one of the storage units.
a. Label the length and width of the enclosure in terms of s.

b. Write the function $L(s)$ to represent the length of the enclosure as a function of side length, s.

$$
L(s)=100-2 s
$$

c. Sketch and label a graph of the function on the given coordinate plane. Identify any key points.
2. Describe the domain and range of the context and of the function.

For the context, the
domain is $0<s<50$
and the range is
$0<L(s)<100$.

For the function, the domain is all real numbers and the range is all real numbers.

$$
L(s)=100-2 s
$$

3. Identify each key characteristic of the graph. Then, interpret the meaning of each in terms of the context.
a. slope
-2
c. increasing or decreasing

decreasing

b. \boldsymbol{y}-intercept
$(0,100)$
d. x-intercept $(50,0)$

Length of the Enclosure (feet)

The progression of diagrams below shows how the area of the enclosure, $A(s)$, changes as the side length, s, of each square storage unit increases.

4. Write the function $A(s)$ to represent the area of the enclosure as a function of side length, s.

$$
A(s)=s(100-2 s)
$$

5. Describe how the area of the enclosure changes as the side length increases. As the side length
increases, the area
of the enclosure first
increases and then
decreases.
6. Consider the graph of the function, $A(s)$.
a. Predict what the graph of the function will look like.
b. Use technology to graph the function $A(s)$. Then sketch the graph and label the axes.

Area of Dog Enclosure

$$
A(s)=s(100-2 s)
$$

The function $A(s)$ that you wrote to model area is a quadratic function.

a parabola.

8. Think about the possible areas of the enclosure.
a. Is there a maximum area that the enclosure can contain? Explain your reasoning in terms of the graph and in terms of the context.
b. Use technology to determine the maximum of $A(s)$. Describe what the \boldsymbol{x} - and \boldsymbol{y}-coordinates of the maximum represent in this context.
c. Determine the dimensions of the enclosure that will provide the maximum area. Show your work and explain your reasoning.

Quadratic functions model area because area is measured in square units.

> The maximum is $(25,1250)$. When the side length is 25 feet, the area of the enclosure is 1250 square feet.

> An enclosure with a side length of 25 feet and a length of 50 feet provides the maximum area.
9. Identify the domain and range of the context and of the
function.
For the context, the
domain is $0<s<50$
and the range is
$0<A(s) \leq 1250$.
For the function, the domain is the set of all real numbers and the range is $A(s) \leq$ 1250.
10. Identify each key characteristic of the graph. Then, interpret the meaning of each in terms of the context.
a. y-intercept

$$
(0,0)
$$

c. symmetry

There is symmetry
between the
increasing and
decreasing intervals.
b. increasing and decreasing intervals

There is an increasing interval when $0<$
d. \boldsymbol{x}-intercepts

The x-intercepts are
$(0,0)$ and $(50,0)$.
$s \leq 25$. There is a
decreasing interval
when $25<s<50$.

