Warm Up

Convert each logarithmic equation to an exponential equation. Then solve for the unknown.

1.
$$\log_{10} 0.1 = x$$

2.
$$\log_2 16 = x$$

3.
$$\log_{10} 10^9 = x$$

4.
$$\log_2 \frac{1}{4} = x$$

Exponential Form $y = b^x$	C	Logarithmic Form $x = \log_b y$
$12^2 = 144$	C	
	C	$\log_{16} 4 = \frac{1}{2}$
$10^5 = 100,000$	C	
	C	In 20.086 ≈ 3
$\left(\frac{2}{3}\right)^3 = \frac{8}{27}$	C	
	C	$\log_9 27 = \frac{3}{2}$
	C	$\log_2 x = 8$
$6^{x} = 36$	C	
$n^5 = 243$	C	log _n 243 = 5

b.
$$-3, 6, \frac{1}{216}$$

Worked Example

To solve for any unknown in a simple logarithmic equation, begin by converting it to an exponential equation.

Argument Is Unknown Exponent Is Unknown Base Is Unknown

$$\log_4 y = 3$$

$$4^3 = y$$

$$64 = y$$

$$\log_4 64 = x$$

$$4^{x} = 64$$

$$4^{x} = 4^{3}$$

$$x = 3$$

$$\log_{b} 64 = 3$$

$$b^3 = 64$$

$$b^3 = 4^3$$

$$b = 4$$

a.
$$\log_8 64 = n$$

b.
$$\log_n \frac{1}{16} = -2$$

c.
$$\log_{\frac{1}{2}} 64 = n$$

d.
$$\log n = -3$$

Practice

1. Solve for the unknown in each logarithmic equation.

a.
$$\log 1000 = n$$

c.
$$\log_{\frac{1}{3}} 81 = n$$

b.
$$\log_n \frac{1}{27} = -3$$

d.
$$\log_{8} 16 = n$$

- 4. Consider the function h(x), which is formed by translating the function $g(x) = \log_3 x$ right 2 units and down 1 unit.
 - a. Write h(x) in terms of g(x).
 - b. Complete the table by determining the corresponding point on h(x) for each reference point on g(x).

Reference Point on g(x)	Corresponding Point on $h(x)$
$(\frac{1}{3}, -1)$	
(1, 0)	
(3, 1)	
(9, 2)	

- c. Write h(x) as a logarithmic function.
- d. List the domain, range, and any asymptotes of the logarithmic function h(x).