Warm Up

Determine the slope and
y-intercept of each linear function.

1. $h(x)=3 x$
2. $g(x)=\frac{1}{2}(x-5)$
3. $k(x)=x-2$
4. $m(x)=\frac{8 x}{4}+1$

Area of Dog Enclosure

$$
\begin{aligned}
A(s) & =-2 s^{2}+100 s \\
& =-2(s)(s-50)
\end{aligned}
$$

\boldsymbol{s}	$\boldsymbol{A}(\mathbf{s})$
0	0
1	98
2	192
3	282
4	368

Handshake Problem

$$
\begin{aligned}
f(n) & =\frac{1}{2} n^{2}-\frac{1}{2} n \\
& =\frac{1}{2}(n)(n-1)
\end{aligned}
$$

\boldsymbol{n}	$\boldsymbol{f}(\boldsymbol{n})$
0	0
1	0
2	1
3	3
4	6

Punkin' Chunkin'

$$
\begin{aligned}
h(t) & =-16 t^{2}+128 t+68 \\
& =-16\left(t-\frac{17}{2}\right)\left(t+\frac{1}{2}\right)
\end{aligned}
$$

\boldsymbol{t}	$\boldsymbol{h}(\boldsymbol{t})$
0	68
1	180
2	260
3	308
4	324

Ghost Tour $r(x)=(10 x+100)(50-x)_{10000^{\mathcal{A}}}$

$$
\begin{aligned}
r(x) & =-10(x+10)(x-50) \\
& =-10 x^{2}+400 x+5000
\end{aligned}
$$

\boldsymbol{x}	$\boldsymbol{r}(\boldsymbol{x})$
0	5000
1	5390
2	5760
3	6110
4	6440

Dollar Decrease in Price
Per Tour
a. How can you tell from the structure of the equation that it is quadratic?

It is a $2^{\text {nd }}$ degree equation
b. What does the structure of the equation tell you about the shape and characteristics of the graph?
If the leading coefficient is negative, the graph opens down, if positive it opens up
c. How can you tell from the shape of the graph that it is quadratic?

It is U-shaped
d. How can you tell from the table that the relationship is quadratic?

It is not linear or exponential, we will explore this aspect...

Let's explore how a table of values can show that a function is quadratic. Consider the table of values represented by the basic quadratic
function. This table represents the first differences between seven consecutive points.

You can tell whether a table represents a linear function by analyzing first differences. First differences imply the calculation of $y_{2}-y_{1}$.

x	$f(x)$	Differences
-3	9	
-2	4	
-1	1	
0	0	
1	1	
2	4	
3	9	

Let's consider the second differences. The second differences are the differences between consecutive values of the first differences.

1. What do the first differences tell you about the relationship of the table of values?

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9

First
Differences Second Differences
$4-9=-5$
$1-4=-3$
$0-1=-1 \longleftrightarrow 2$
$1-0=1$
$4-1=3$
$9-4=5$ $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2\end{aligned}$
2. Calculate the second differences for $f(x)$. What do you notice?

The second differences
are each equal to 2 . The
second differences are
constant.
5. Identify each equation as linear or quadratic. Complete the table to calculate the first and second differences. Then sketch the graph. Linear
a. $y=2 x$

b. $y=2 x^{2}$

\boldsymbol{x}	\boldsymbol{y}	First Differences	Second Differences
-3	-6	2	0
-2	-4	2	0
-1	-2	2	0
0	0	2	0
1	2	2	0
2	4	2	
3	6		

\boldsymbol{x}	\boldsymbol{y}	First Differences	Second Differences				
-3	18	-10	4				
-2	8	-6	4				
-1	2	-2	4				
0	0	-2	2				
1	2	6	4				
2	8	4	4				
3	18						

c. $y=-x+4$

x	y	First	Second
-3	7		Differences
-2	6		
-1	5		
0	4		
1	3		
2	2		
3	1		

d. $y=-x^{2}+4$

-3	-5	Differences	Differences
-2	0		
-1	3		
0	4		
1	3		
2	0		
3	-5		

