Warm-up:

The two forms at the right $f(x)=(x-4)(x+1)$ represent the same graph. $f(x)=x^{2}-3 x-4$ Identify :
the direction of the opening UP The \boldsymbol{y}-intercept $(0,-4)$
\boldsymbol{x}-intercepts $(4,0)$ and $(-1,0)$
AOS

$$
\frac{4+(-1)}{2}=\frac{3}{2}
$$

Vertex:

$$
\begin{aligned}
& f(1.5)=(1.5)^{2}-3(1.5)-4 \\
& f(1.5)=-6.25 \quad V(1.5,-6.25)
\end{aligned}
$$

Graph the function

Consider the graph of the quadratic function representing the Punkin'

Punkin' Chunkin'

7. Determine the average rate of change between each pair. Then summarize what you notice.
a. points A and B

$$
\frac{128-0}{0.5-(-0.5)}=\frac{128}{1}
$$

c. points B and C
$\frac{180-128}{1-(0.5)}=\frac{52}{0.5}=104$
b. points A^{\prime} and B^{\prime}

$$
\frac{0-128}{8.5-7.5}=\frac{-128}{1}
$$

d. points B^{\prime} and C^{\prime}

$$
\frac{128-180}{7.5-(7)}=\frac{-52}{0.5}=-104
$$

e. What do you notice about the average rates of change between pairs of symmetric points?

The formula for the average rate of change is $\frac{f(b)-f(a)}{b-a}$.

The average rates of change between pairs of symmetric points on a parabola are opposites of each other.

8. For each function shown, identify the domain, range,

x-intercepts, y-intercept, axis of symmetry, vertex, and interval of increase and decrease.
a. The graph shown represents the function $f(x)=-2 x^{2}+4 x$.

Domain: | Domain: all real Range: Range: $f(x) \leq 2$ |
| :--- |
| numbers |

x-intercepts:
x-intercepts: (0, 0) and $(2,0)$

Axis of symmetry:
Axis of symmetry: $x=1$

Interval of increase:

$$
\begin{aligned}
& \text { Interval of increase: } \\
& -\infty<x<1
\end{aligned}
$$

\boldsymbol{y}-intercept:
y-intercept: (0,0)

Vertex:

$$
\text { Vertex: }(1,2)
$$

Interval of decrease:

```
Interval of decrease:
    1<x<\infty
```

b. The graph shown represents the function
$f(x)=x^{2}+5 x+6$.

Domain:

Domain: all real
numbers
x-intercepts:
x-intercepts: $(-3,0)$ and $(-2,0)$

Axis of symmetry:
Axis of symmetry:
$x=-2.5$

Interval of increase:
Interval of increase:
$-2.5<x<\infty$

Range:
Range: $f(x) \geq-\frac{1}{4}$
y-intercept:
y-intercept: (0, 6)

Vertex:

Vertex: (-2.5, -0.25)

Interval of decrease:
Interval of decrease:

$$
-\infty<x<-2.5
$$

c. The graph shown represents the function $f(x)=x^{2}-x-2$.

d. The graph shown represents the function $f(x)=x^{2}-3 x+2$.

Domain:
x-intercepts:

Axis of symmetry:

Interval of increase:

Vertex:

Interval of decrease:

