Warm-up:

Use transformations to graph each

2

$$
g(x)=x^{2}+2
$$

$\stackrel{3}{ }$

$$
g(x)=x^{2}-3
$$

3. Now, let's compare the graph of $f(x)=x^{2}$ with $r(x)=f\left(\frac{1}{2} x\right)$.

x	$f(x)=x^{2}$	$r(x)=p\left(\frac{1}{2} x\right)$
0	0	0
1	1	0.25
2	4	1
3	9	2.25
4	16	4
5	25	6.25
6	36	9

a. Analyze the table of values that correspond to the graph.

Circle instances where the y-values for each function are the same. Then, list all the points where $f(x)$ and $r(x)$ have the same y-value. The first instance has been circled for you.
b. How do the x-values compare when the y-values are the same?
c. Complete the statement.

The function $r(x)$ is a \qquad of $f(x)$ by a factor of \qquad
d. How does the factor of stretching or compression compare to the B-value in $r(x)$?

Compared with the graph of $f(x)$, the graph of $f(B x)$ is:

- horizontally compressed by a factor of $\frac{1}{|B|}$ if $|B|>1$.
- horizontally stretched by a factor of $\frac{1}{|B|}$ if $0<|B|<1$.

You can use reference points to graph the function $q(x)=f\left(\frac{1}{3} x\right)$ when $f(x)=x^{2}$
From $q(x)$ you know that $C=0, D=0$, and $B=\frac{1}{3}$. The vertex for $q(x)$ is $(0,0)$.
Notice $0<|B|<1$, so the graph will horizontally stretch by a factor of $\frac{1}{\frac{1}{3}}$ or 3 .

4. If you were asked to graph $p(x)=f(3 x)$, describe how the graph would change. If (x, y) is any point on $f(x)$, describe any point on $p(x)$.
5. Consider the graph showing the quadratic functions $\boldsymbol{k}(\boldsymbol{x})$ and $\boldsymbol{m}(x)$. Antoine and Xi Ling are writing the function $\boldsymbol{m}(x)$ in terms of $\boldsymbol{k}(\boldsymbol{x})$.

Antoine says that $\boldsymbol{m}(x)$ is a transformation of the A-value.

$$
m(x)=\frac{1}{4} k(x)
$$

Xi Ling says that $\boldsymbol{m}(x)$ is a transformation of the B-value.

$$
m(x)=k\left(\frac{1}{2} x\right)
$$

Who's correct? Justify your reasoning.

Given $y=f(x)$ is the basic quadratic function, you can use reference points to graph $y=A f(B(x-C))+D$. Any point (x, y) on $f(x)$ maps to the point $\left(\frac{1}{B} x+C, A y+D\right)$.

Given $f(x)=x^{2}$, graph the function $g(x)=2 f(x-3)+4$.
You can use reference points for $f(x)$ and your knowledge about transformations to graph the function $g(x)$.

From $g(x)$, you know that $A=2, C=3$, and $D=4$.
The vertex for $g(x)$ will be at $(3,4)$. Notice $A>0$, so the graph of the function will vertically stretch by a factor of 2 .

1. Christian, Julia, and Emily each sketched a graph of the equation $y=-x^{2}-3$ using different strategies. Provide the step-by-step reasoning used by each student.

Christian

$$
A=-1 \text { and } D=-3
$$

Step I:

Step 2:

Step 3:

1. Christian, Julia, and Emily each sketched a graph of the equation $y=-x^{2}-3$ using different strategies. Provide the step-by-step reasoning used by each student.

Julia

$$
D=-3 \text { and } A=-1
$$

Step I:

Step 2:

Step 3:

Emily

I rewrote the equation as $y=-\left(x^{2}+3\right)$.

Step I:

Step 2:
2. Given $y=p(x)$, sketch $m(x)=-p(x+3)$. Describe the transformations you performed.

3. Given $f(x)=x^{2}$, graph each function. Then write each
corresponding quadratic equation.
a. $f^{\prime}(x)=\frac{1}{2} f(x-2)+3$
b. $f^{\prime}(x)=-3 f(x+1)+1$

4. Write $n(x)$ in terms of $d(x)$. Then write the quadratic equation
for $n(x)$.

