Warm-up:

Factor:

1)
$$x^2 - 25$$

$$(2)x^2 - 12x + 36$$

a.
$$x^2 - 6x + 4 = 0$$

b.
$$x^2 - 12x + 6 = 0$$

You can identify the axis of symmetry and the vertex of any quadratic function written in general form by completing the square.

Worked Example

Consider the equation $y = ax^2 + bx + c$.

Step 1:
$$y - c = ax^2 + bx$$

Step 2:
$$y - c = a\left(x^2 + \frac{b}{a}x\right)$$

Step 3:
$$y-c+a\left(\frac{b}{2a}\right)^2=a\left(x^2+\frac{b}{a}x+\left(\frac{b}{2a}\right)^2\right)$$

Step 4:
$$y - c + \frac{b^2}{4a} = a\left(x + \frac{b}{2a}\right)^2$$

Step 1:
$$y - c = ax^2 + bx$$
Step 2:
$$y - c = a\left(x^2 + \frac{b}{a}x\right)$$
Step 3:
$$y - c + a\left(\frac{b}{2a}\right)^2 = a\left(x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2\right)$$
Step 4:
$$y - c + \frac{b^2}{4a} = a\left(x + \frac{b}{2a}\right)^2$$
Step 5:
$$y = a\left(x + \frac{b}{2a}\right)^2 + \left(c - \frac{b^2}{4a}\right)$$

$$y = a\left(x + \frac{b}{2a}\right)^2 + \left(c - \frac{b^2}{4a}\right)^2$$

- 2. Given a quadratic function in the form $y = ax^2 + bx + c$:
 - a. Identify the axis of symmetry.

b. Identify the location of the vertex.

3. Rewrite each quadratic equation in vertex form. Then identify the zeros and sketch a graph of each function. Write the zeros in terms of the axis of symmetry and the parabola.

a.
$$y = x^2 + 8x - 9$$

b.
$$y = 3x^2 + 2x - 1$$

4. A ball is thrown straight up from 4 feet above the ground with a velocity of 32 feet per second. The height of the ball over time can be modeled with the function $h(t) = -16t^2 + 32t + 4$. What is the maximum height of the ball?

Practice

1. Solve each equation.

a.
$$0 = x^2 - 7x - 18$$

b.
$$x^2 + 10x = 39$$

c.
$$0 = x^2 - 10x + 12$$

d.
$$2x^2 + 4x = 0$$

e.
$$3x^2 - 22x + 7 = 0$$

2. Determine the roots of the equation $y = x^2 + 9x + 3$. Check your solutions.

- 3. Consider the equation $y = 2x^2 + 10x 8$.
 - a. Graph the equation.
 - b. Use the graph to estimate the solutions to the equation. Explain how you determined your answer.
 - c. Two students completed the square to determine the solutions to this equation. Their work is shown. Who is correct? Explain your reasoning.

Student 1

$$y = 2x^{2} + 10x - 8$$

$$2x^{2} + 10x - 8 = 0$$

$$2x^{2} + 10x = 8$$

$$2x^{2} + 10x + 25 = 8 + 25$$

$$(2x + 5)^{2} = 33$$

$$\sqrt{(2x + 5)^{2}} = \pm\sqrt{33}$$

$$2x + 5 = \pm\sqrt{33}$$

$$x = \frac{-5 \pm\sqrt{33}}{2}$$

$$X \approx -5.372 \text{ and } x \approx 0.372$$

Student 2

$$y = 2x^{2} + 10x - 8$$

$$2x^{2} + 10x - 8 = 0$$

$$\frac{2x^{2} + 10x - 8}{2} = 0$$

$$x^{2} + 5x = 4$$

$$x^{2} + 5x + \frac{25}{4} = 4 + \frac{25}{4}$$

$$\left(x + \frac{5}{2}\right)^{2} = \frac{41}{4}$$

$$\sqrt{\left(x + \frac{5}{2}\right)^{2}} = \pm\sqrt{\frac{41}{4}}$$

$$x + \frac{5}{2} = \pm\frac{\sqrt{41}}{2}$$

$$x = \frac{-5 \pm \sqrt{41}}{2}$$

$$x \approx -5.702 \text{ and } x \approx 0.702$$