Polar Coordinates

Polar Coordinate System

A polar coordinate system is a plane with a point O, the pole, and a ray from O, the polar axis, as shown in Figure 6.35. Each point P in the plane is assigned as polar coordinates follows: r is the directed distance from O to P, and θ is the directed angle whose initial side is on the polar axis and whose terminal side is on the line $O P$.

As in trigonometry, we measure θ as positive when moving counterclockwise and negative when moving clockwise. If $r>0$, then P is on the terminal side of θ. If $r<0$, then P is on the terminal side of $\theta+\pi$. We can use radian or degree measure for the angle θ as illustrated in Example 1.

EXAMPLE 1 Plotting Points in the Polar Coordinate System

Plot the points with the given polar coordinates.
(a) $P(2, \pi / 3)$

(b) $Q(-1,3 \pi / 4)$ $r=-1$

(c) $R\left(3,-45^{\circ}\right)$

$$
r=3 \quad \theta=-45^{\circ}
$$

EXAMPLE 2 Finding all Polar Coordinates for a Point

If the point P has polar coordinates $(3, \pi / 3)$, find all polar coordinates for P.

EXAMPLE 3 Converting from Polar to Rectangular Coordinates
Find the rectangular coordinates of the points with the given polar coordinates.
(a) $P(3,5 \pi / 6) \quad(x, y)$
(b) $Q\left(2,-200^{\circ}\right)$

$$
\begin{aligned}
& x=3 \cos \frac{5 \pi}{6} \\
& x=3\left(-\frac{\sqrt{3}}{2}\right) \\
& x=-\frac{3 \sqrt{3}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x=2 \cos \left(-200^{\circ}\right)=-1.88 \\
& y=2 \sin \left(-200^{\circ}\right)=.68
\end{aligned}
$$

$$
\begin{aligned}
& y=3 \sin \frac{\frac{5 \pi}{6}}{y} \\
& =3\left(\frac{1}{2}\right)=\frac{3}{2} \\
& P\left(-\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right) \\
& P(-2.6,1.5)
\end{aligned}
$$

EXAMPLE 4 Converting from Rectangular to Polar Coordinates
Find two polar coordinate pairs for the points with given rectangular coordinates.

$$
\begin{aligned}
& \text { (a) } \frac{P(-1,1)}{(x, y)} \\
& \text { (b) } Q(-3,0) \\
& r^{2}=x^{2}+y^{2} \\
& \tan \theta=\frac{y}{x}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
r^{2}=(-3)^{2}+\phi^{2} \\
r^{2}=9 \\
r=3
\end{array} \\
& r=3 \\
& (r, \theta) \\
& (3,-\pi) \quad(-3,2 \pi 1) \\
& (3,-\pi) \quad(-3,-2 \pi) \\
& (-3)
\end{aligned}
$$

