Polar Coordinates

Polar Coordinate System

A **polar coordinate system** is a plane with a point O, the **pole**, and a ray from O, the **polar axis**, as shown in Figure 6.35. Each point P in the plane is assigned as **polar coordinates** follows: r is the **directed distance** from O to P, and θ is the **directed angle** whose initial side is on the polar axis and whose terminal side is on the line OP.

As in trigonometry, we measure θ as positive when moving counterclockwise and negative when moving clockwise. If r > 0, then P is on the terminal side of θ . If r < 0, then P is on the terminal side of $\theta + \pi$. We can use radian or degree measure for the angle θ as illustrated in Example 1.

Pole
$$\theta$$
Polar axis

EXAMPLE 1 Plotting Points in the Polar Coordinate System

Plot the points with the given polar coordinates.

(a)
$$P(2, \pi/3)$$

$$P\left(2, \frac{\pi}{3}\right)$$

$$P\left(\frac{\pi}{3}\right)$$

$$\frac{\pi}{3}$$

(b)
$$Q(-1, 3\pi/4)$$

(c)
$$R(3, -45^{\circ})$$

EXAMPLE 2 Finding all Polar Coordinates for a Point

If the point P has polar coordinates $(3, \pi/3)$, find all polar coordinates for P.

EXAMPLE 3 Converting from Polar to Rectangular Coordinates

Find the rectangular coordinates of the points with the given polar coordinates.

(a)
$$P(3, 5\pi/6)$$

(b)
$$Q(2, -200^{\circ})$$

$$X = 3 \cos 50$$
 $X = 3 \left(-\sqrt{3}\right)$
 $X = -3\sqrt{3}$

$$X = 2 \cos(-200) = -1.84$$

$$Y = 2 \sin(-200) = -68$$

$$Q(-1.881.68)$$

EXAMPLE 4 Converting from Rectangular to Polar Coordinates

Find two polar coordinate pairs for the points with given rectangular coordinates.

$$r^{2} = x^{2} + y^{2} \qquad \tan \theta = \frac{y}{x}$$

$$r^{2} = (-3)^{3} + 0$$

$$r^{2} = 9$$

$$r = 3$$

$$(1 - 3)^{2} + 0$$

$$(3 - 7) \qquad (-3 - 27)$$

$$(3 - 7) \qquad (-3 - 27)$$